Back to Search Start Over

Differential transcriptional responses of carotenoid biosynthesis genes in the marine green alga Tetraselmis suecica exposed to redox and non-redox active metals.

Authors :
Sathasivam R
Ki JS
Source :
Molecular biology reports [Mol Biol Rep] 2019 Feb; Vol. 46 (1), pp. 1167-1179. Date of Electronic Publication: 2019 Jan 16.
Publication Year :
2019

Abstract

The green microalga, Tetraselmis suecica, is commonly used in scientific, industrial, and aquacultural purposes because of its high stress tolerance and ease of culture in wide spectrums of environments. We hypothesized that carotenoids help to protect Tetraselmis cells from environmental stress by regulating genes in biosynthetic pathways. Here, we determined three major carotenogenic genes, phytoene synthase (PSY), phytoene desaturase (PDS), and β-lycopene cyclase (LCY-B) in T. suecica, and examined the physiological parameters and gene expression responses when exposed to redox-active metals and non-redox-active metals. Phylogenetic analyses of each gene indicated that T. suecica clustered well with other green algae. Real-time PCR analysis showed that TsPSY, TsPDS, and TsLCY-B genes greatly responded to the redox-active metals in CuSO <subscript>4</subscript> followed by CuCl <subscript>2</subscript> , but not to the non-redox-active metals. The redox-active metals strongly affected the physiology of the cells, as determined by cell counting, reactive oxygen species (ROS) imaging, and photosynthetic efficiency. This suggests that carotenoids protect the cells from oxidative damage caused by metals, thereby contributing to cell survival under various stress conditions.

Details

Language :
English
ISSN :
1573-4978
Volume :
46
Issue :
1
Database :
MEDLINE
Journal :
Molecular biology reports
Publication Type :
Academic Journal
Accession number :
30649658
Full Text :
https://doi.org/10.1007/s11033-018-04583-9