Back to Search
Start Over
Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers.
- Source :
-
Scientific reports [Sci Rep] 2019 Jan 15; Vol. 9 (1), pp. 142. Date of Electronic Publication: 2019 Jan 15. - Publication Year :
- 2019
-
Abstract
- There is an association between smoking and cancer, cardiovascular disease and all-cause mortality. However, currently, there are no affordable and informative tests for assessing the effects of smoking on the rate of biological aging. In this study we demonstrate for the first time that smoking status can be predicted using blood biochemistry and cell count results andthe recent advances in artificial intelligence (AI). By employing age-prediction models developed using supervised deep learning techniques, we found that smokers exhibited higher aging rates than nonsmokers, regardless of their cholesterol ratios and fasting glucose levels. We further used those models to quantify the acceleration of biological aging due to tobacco use. Female smokers were predicted to be twice as old as their chronological age compared to nonsmokers, whereas male smokers were predicted to be one and a half times as old as their chronological age compared to nonsmokers. Our findings suggest that deep learning analysis of routine blood tests could complement or even replace the current error-prone method of self-reporting of smoking status and could be expanded to assess the effect of other lifestyle and environmental factors on aging.
- Subjects :
- Age Factors
Aging, Premature etiology
Artificial Intelligence
Blood Cell Count
Blood Chemical Analysis instrumentation
Deep Learning
Humans
Middle Aged
Risk Factors
Sex Factors
Smoking adverse effects
Smoking physiopathology
Aging, Premature diagnosis
Blood Chemical Analysis methods
Smokers
Smoking pathology
Supervised Machine Learning
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 30644411
- Full Text :
- https://doi.org/10.1038/s41598-018-35704-w