Back to Search
Start Over
SR Ca 2+ leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance.
- Source :
-
The Journal of general physiology [J Gen Physiol] 2019 Apr 01; Vol. 151 (4), pp. 567-577. Date of Electronic Publication: 2019 Jan 11. - Publication Year :
- 2019
-
Abstract
- Effective practices to improve skeletal muscle fatigue resistance are crucial for athletes as well as patients with dysfunctional muscles. To this end, it is important to identify the cellular signaling pathway that triggers mitochondrial biogenesis and thereby increases oxidative capacity and fatigue resistance in skeletal muscle fibers. Here, we test the hypothesis that the stress induced in skeletal muscle fibers by endurance exercise causes a reduction in the association of FK506-binding protein 12 (FKBP12) with ryanodine receptor 1 (RYR1). This will result in a mild Ca <superscript>2+</superscript> leak from the sarcoplasmic reticulum (SR), which could trigger mitochondrial biogenesis and improved fatigue resistance. After giving mice access to an in-cage running wheel for three weeks, we observed decreased FKBP12 association to RYR1, increased baseline [Ca <superscript>2+</superscript> ] <subscript>i</subscript> , and signaling associated with greater mitochondrial biogenesis in muscle, including PGC1α1. After six weeks of voluntary running, FKBP12 association is normalized, baseline [Ca <superscript>2+</superscript> ] <subscript>i</subscript> returned to values below that of nonrunning controls, and signaling for increased mitochondrial biogenesis was no longer present. The adaptations toward improved endurance exercise performance that were observed with training could be mimicked by pharmacological agents that destabilize RYR1 and thereby induce a modest Ca <superscript>2+</superscript> leak. We conclude that a mild RYR1 SR Ca <superscript>2+</superscript> leak is a key trigger for the signaling pathway that increases muscle fatigue resistance.<br /> (© 2019 Ivarsson et al.)
- Subjects :
- Animals
Anti-Bacterial Agents pharmacology
Male
Mice
Motor Activity
Muscle, Skeletal
Protein Stability
Ryanodine Receptor Calcium Release Channel genetics
Ryanodine Receptor Calcium Release Channel metabolism
Signal Transduction
Sirolimus pharmacology
Tacrolimus Binding Protein 1A pharmacology
Calcium metabolism
Muscle Fatigue physiology
Sarcoplasmic Reticulum physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1540-7748
- Volume :
- 151
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- The Journal of general physiology
- Publication Type :
- Academic Journal
- Accession number :
- 30635368
- Full Text :
- https://doi.org/10.1085/jgp.201812152