Back to Search Start Over

What Makes a Kinase Promiscuous for Inhibitors?

Authors :
Hanson SM
Georghiou G
Thakur MK
Miller WT
Rest JS
Chodera JD
Seeliger MA
Source :
Cell chemical biology [Cell Chem Biol] 2019 Mar 21; Vol. 26 (3), pp. 390-399.e5. Date of Electronic Publication: 2019 Jan 03.
Publication Year :
2019

Abstract

ATP-competitive kinase inhibitors often bind several kinases due to the high conservation of the ATP binding pocket. Through clustering analysis of a large kinome profiling dataset, we found a cluster of eight promiscuous kinases that on average bind more than five times more kinase inhibitors than the other 398 kinases in the dataset. To understand the structural basis of promiscuous inhibitor binding, we determined the co-crystal structure of the receptor tyrosine kinase DDR1 with the type I inhibitors dasatinib and VX-680. Surprisingly, we find that DDR1 binds these type I inhibitors in an inactive conformation typically reserved for type II inhibitors. Our computational and biochemical studies show that DDR1 is unusually stable in this inactive conformation, giving a mechanistic explanation for inhibitor promiscuity. This phenotypic clustering analysis provides a strategy to obtain functional insights not available by sequence comparison alone.<br /> (Copyright © 2018 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
2451-9448
Volume :
26
Issue :
3
Database :
MEDLINE
Journal :
Cell chemical biology
Publication Type :
Academic Journal
Accession number :
30612951
Full Text :
https://doi.org/10.1016/j.chembiol.2018.11.005