Back to Search Start Over

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.

Authors :
Mavaddat N
Michailidou K
Dennis J
Lush M
Fachal L
Lee A
Tyrer JP
Chen TH
Wang Q
Bolla MK
Yang X
Adank MA
Ahearn T
Aittomäki K
Allen J
Andrulis IL
Anton-Culver H
Antonenkova NN
Arndt V
Aronson KJ
Auer PL
Auvinen P
Barrdahl M
Beane Freeman LE
Beckmann MW
Behrens S
Benitez J
Bermisheva M
Bernstein L
Blomqvist C
Bogdanova NV
Bojesen SE
Bonanni B
Børresen-Dale AL
Brauch H
Bremer M
Brenner H
Brentnall A
Brock IW
Brooks-Wilson A
Brucker SY
Brüning T
Burwinkel B
Campa D
Carter BD
Castelao JE
Chanock SJ
Chlebowski R
Christiansen H
Clarke CL
Collée JM
Cordina-Duverger E
Cornelissen S
Couch FJ
Cox A
Cross SS
Czene K
Daly MB
Devilee P
Dörk T
Dos-Santos-Silva I
Dumont M
Durcan L
Dwek M
Eccles DM
Ekici AB
Eliassen AH
Ellberg C
Engel C
Eriksson M
Evans DG
Fasching PA
Figueroa J
Fletcher O
Flyger H
Försti A
Fritschi L
Gabrielson M
Gago-Dominguez M
Gapstur SM
García-Sáenz JA
Gaudet MM
Georgoulias V
Giles GG
Gilyazova IR
Glendon G
Goldberg MS
Goldgar DE
González-Neira A
Grenaker Alnæs GI
Grip M
Gronwald J
Grundy A
Guénel P
Haeberle L
Hahnen E
Haiman CA
Håkansson N
Hamann U
Hankinson SE
Harkness EF
Hart SN
He W
Hein A
Heyworth J
Hillemanns P
Hollestelle A
Hooning MJ
Hoover RN
Hopper JL
Howell A
Huang G
Humphreys K
Hunter DJ
Jakimovska M
Jakubowska A
Janni W
John EM
Johnson N
Jones ME
Jukkola-Vuorinen A
Jung A
Kaaks R
Kaczmarek K
Kataja V
Keeman R
Kerin MJ
Khusnutdinova E
Kiiski JI
Knight JA
Ko YD
Kosma VM
Koutros S
Kristensen VN
Krüger U
Kühl T
Lambrechts D
Le Marchand L
Lee E
Lejbkowicz F
Lilyquist J
Lindblom A
Lindström S
Lissowska J
Lo WY
Loibl S
Long J
Lubiński J
Lux MP
MacInnis RJ
Maishman T
Makalic E
Maleva Kostovska I
Mannermaa A
Manoukian S
Margolin S
Martens JWM
Martinez ME
Mavroudis D
McLean C
Meindl A
Menon U
Middha P
Miller N
Moreno F
Mulligan AM
Mulot C
Muñoz-Garzon VM
Neuhausen SL
Nevanlinna H
Neven P
Newman WG
Nielsen SF
Nordestgaard BG
Norman A
Offit K
Olson JE
Olsson H
Orr N
Pankratz VS
Park-Simon TW
Perez JIA
Pérez-Barrios C
Peterlongo P
Peto J
Pinchev M
Plaseska-Karanfilska D
Polley EC
Prentice R
Presneau N
Prokofyeva D
Purrington K
Pylkäs K
Rack B
Radice P
Rau-Murthy R
Rennert G
Rennert HS
Rhenius V
Robson M
Romero A
Ruddy KJ
Ruebner M
Saloustros E
Sandler DP
Sawyer EJ
Schmidt DF
Schmutzler RK
Schneeweiss A
Schoemaker MJ
Schumacher F
Schürmann P
Schwentner L
Scott C
Scott RJ
Seynaeve C
Shah M
Sherman ME
Shrubsole MJ
Shu XO
Slager S
Smeets A
Sohn C
Soucy P
Southey MC
Spinelli JJ
Stegmaier C
Stone J
Swerdlow AJ
Tamimi RM
Tapper WJ
Taylor JA
Terry MB
Thöne K
Tollenaar RAEM
Tomlinson I
Truong T
Tzardi M
Ulmer HU
Untch M
Vachon CM
van Veen EM
Vijai J
Weinberg CR
Wendt C
Whittemore AS
Wildiers H
Willett W
Winqvist R
Wolk A
Yang XR
Yannoukakos D
Zhang Y
Zheng W
Ziogas A
Dunning AM
Thompson DJ
Chenevix-Trench G
Chang-Claude J
Schmidt MK
Hall P
Milne RL
Pharoah PDP
Antoniou AC
Chatterjee N
Kraft P
García-Closas M
Simard J
Easton DF
Source :
American journal of human genetics [Am J Hum Genet] 2019 Jan 03; Vol. 104 (1), pp. 21-34. Date of Electronic Publication: 2018 Dec 13.
Publication Year :
2019

Abstract

Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.<br /> (Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1537-6605
Volume :
104
Issue :
1
Database :
MEDLINE
Journal :
American journal of human genetics
Publication Type :
Academic Journal
Accession number :
30554720
Full Text :
https://doi.org/10.1016/j.ajhg.2018.11.002