Back to Search Start Over

Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides.

Authors :
Martins JP
Liu D
Fontana F
Ferreira MPA
Correia A
Valentino S
Kemell M
Moslova K
Mäkilä E
Salonen J
Hirvonen J
Sarmento B
Santos HA
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2018 Dec 26; Vol. 10 (51), pp. 44354-44367. Date of Electronic Publication: 2018 Dec 17.
Publication Year :
2018

Abstract

Microfluidics technology is emerging as a promising strategy in improving the oral delivery of proteins and peptides. Herein, a multistage drug delivery system is proposed as a step forward in the development of noninvasive therapies. Undecylenic acid-modified thermally hydrocarbonized porous silicon (UnPSi) nanoparticles (NPs) were functionalized with the Fc fragment of immunoglobulin G for targeting purposes. Glucagon-like peptide-1 (GLP-1) was loaded into the NPs as a model antidiabetic drug. Fc-UnPSi NPs were coated with mucoadhesive chitosan and ultimately entrapped into a polymeric matrix with pH-responsive properties by microfluidic nanoprecipitation. The final formulation showed a controlled and narrow size distribution. The pH-responsive matrix remained intact in acidic conditions, dissolving only in intestinal pH, resulting in a sustained release of the payload. The NPs presented high cytocompatibility and increased levels of interaction with intestinal cells when functionalized with the Fc fragment, which was supported by the validation of the Fc-fragment integrity after conjugation to the NPs. Finally, the Fc-conjugated NPs showed augmented GLP-1 permeability in an intestinal in vitro model. These results highlight the potential of microfluidics as an advanced technique for the preparation of multistage platforms for oral administration. Moreover, this study provides new insights on the potential of the Fc receptor transcytotic capacity for the development of targeted therapies.

Details

Language :
English
ISSN :
1944-8252
Volume :
10
Issue :
51
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
30525379
Full Text :
https://doi.org/10.1021/acsami.8b20821