Back to Search
Start Over
Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using 64 Cu-Labeled Macrin.
- Source :
-
ACS nano [ACS Nano] 2018 Dec 26; Vol. 12 (12), pp. 12015-12029. Date of Electronic Publication: 2018 Dec 11. - Publication Year :
- 2018
-
Abstract
- Tumor-associated macrophages (TAMs) are widely implicated in cancer progression, and TAM levels can influence drug responses, particularly to immunotherapy and nanomedicines. However, it has been difficult to quantify total TAM numbers and their dynamic spatiotemporal distribution in a non-invasive and translationally relevant manner. Here, we address this need by developing a pharmacokinetically optimized, <superscript>64</superscript> Cu-labeled polyglucose nanoparticle (Macrin) for quantitative positron emission tomography (PET) imaging of macrophages in tumors. By combining PET with high-resolution in vivo confocal microscopy and ex vivo imaging of optically cleared tissue, we found that Macrin was taken up by macrophages with >90% selectivity. Uptake correlated with the content of macrophages in both healthy tissue and tumors ( R <superscript>2</superscript> > 0.9) and showed striking heterogeneity in the TAM content of an orthotopic and immunocompetent mouse model of lung carcinoma. In a proof-of-principle application, we imaged Macrin to monitor the macrophage response to neo-adjuvant therapy, using a panel of chemotherapeutic and γ-irradiation regimens. Multiple treatments elicited 180-650% increase in TAMs. Imaging identified especially TAM-rich tumors thought to exhibit enhanced permeability and retention of nanotherapeutics. Indeed, these TAM-rich tumors accumulated >700% higher amounts of a model poly(d,l-lactic- co-glycolic acid)- b-polyethylene glycol (PLGA-PEG) therapeutic nanoparticle compared to TAM-deficient tumors, suggesting that imaging may guide patient selection into nanomedicine trials. In an orthotopic breast cancer model, chemoradiation enhanced TAM and Macrin accumulation in tumors, which corresponded to the improved delivery and efficacy of two model nanotherapies, PEGylated liposomal doxorubicin and a TAM-targeted nanoformulation of the toll-like receptor 7/8 agonist resiquimod (R848). Thus, Macrin imaging offers a selective and translational means to quantify TAMs and inform therapeutic decisions.
- Subjects :
- Animals
Copper Radioisotopes
Drug Screening Assays, Antitumor
Female
Lung Neoplasms diagnostic imaging
Macrophages pathology
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, Inbred NOD
Mice, Knockout
Neoadjuvant Therapy
Positron-Emission Tomography
Antibiotics, Antineoplastic pharmacology
Doxorubicin pharmacology
Glucans chemistry
Isotope Labeling
Lung Neoplasms drug therapy
Macrophages drug effects
Nanoparticles chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1936-086X
- Volume :
- 12
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- ACS nano
- Publication Type :
- Academic Journal
- Accession number :
- 30508377
- Full Text :
- https://doi.org/10.1021/acsnano.8b04338