Back to Search Start Over

A Machine-Learning Approach to Predicting Smoking Cessation Treatment Outcomes.

Authors :
Coughlin LN
Tegge AN
Sheffer CE
Bickel WK
Source :
Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco [Nicotine Tob Res] 2020 Mar 16; Vol. 22 (3), pp. 415-422.
Publication Year :
2020

Abstract

Aims: Most cigarette smokers want to quit smoking and more than half make an attempt every year, but less than 10% remain abstinent for at least 6 months. Evidence-based tobacco use treatment improves the likelihood of quitting, but more than two-thirds of individuals relapse when provided even the most robust treatments. Identifying for whom treatment is effective will improve the success of our treatments and perhaps identify strategies for improving current approaches.<br />Methods: Two cohorts (training: N = 90, validation: N = 71) of cigarette smokers enrolled in group cognitive-behavioral therapy (CBT). Generalized estimating equations were used to identify baseline predictors of outcome, as defined by breath carbon monoxide and urine cotinine. Significant measures were entered as candidate variables to predict quit status. The resulting decision trees were used to predict cessation outcomes in a validation cohort.<br />Results: In the training cohort, the decision trees significantly improved on chance classification of smoking status following treatment and at 6-month follow-up. The first split of all decision trees, which was delay discounting, significantly improved on chance classification rates in both the training and validation cohort. Delay discounting emerged as the single best predictor of group CBT treatment response with an average baseline discount rate of ln(k) = -7.1, correctly predicting smoking status of 80% of participants at posttreatment and 81% of participants at follow-up.<br />Conclusions: This study provides a first step toward personalized care for smoking cessation though future work is needed to identify individuals that are likely to be successful in treatments beyond group CBT.<br />Implications: This study provides a first step toward personalized care for smoking cessation. Using a novel machine-learning approach, baseline measures of clinical and executive functioning are used to predict smoking cessation outcomes following group CBT. A decision point is recommended for the single best predictor of treatment outcomes, delay discounting, to inform future research or clinical practice in an effort to better allocate patients to treatments that are likely to work.<br /> (© The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1469-994X
Volume :
22
Issue :
3
Database :
MEDLINE
Journal :
Nicotine & tobacco research : official journal of the Society for Research on Nicotine and Tobacco
Publication Type :
Academic Journal
Accession number :
30508122
Full Text :
https://doi.org/10.1093/ntr/nty259