Back to Search
Start Over
Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits.
- Source :
-
The Journal of clinical investigation [J Clin Invest] 2019 Jan 02; Vol. 129 (1), pp. 310-323. Date of Electronic Publication: 2018 Dec 03. - Publication Year :
- 2019
-
Abstract
- We investigated how pathological changes in newborn hippocampal dentate granule cells (DGCs) lead to epilepsy. Using a rabies virus-mediated retrograde tracing system and a designer receptors exclusively activated by designer drugs (DREADD) chemogenetic method, we demonstrated that newborn hippocampal DGCs are required for the formation of epileptic neural circuits and the induction of spontaneous recurrent seizures (SRS). A rabies virus-mediated mapping study revealed that aberrant circuit integration of hippocampal newborn DGCs formed excessive de novo excitatory connections as well as recurrent excitatory loops, allowing the hippocampus to produce, amplify, and propagate excessive recurrent excitatory signals. In epileptic mice, DREADD-mediated-specific suppression of hippocampal newborn DGCs dramatically reduced epileptic spikes and SRS in an inducible and reversible manner. Conversely, specific activation of hippocampal newborn DGCs increased both epileptic spikes and SRS. Our study reveals an essential role for hippocampal newborn DGCs in the formation and function of epileptic neural circuits, providing critical insights into DGCs as a potential therapeutic target for treating epilepsy.
- Subjects :
- Animals
Animals, Newborn
Dentate Gyrus metabolism
Dentate Gyrus pathology
Designer Drugs pharmacology
Epilepsy drug therapy
Epilepsy metabolism
Epilepsy pathology
Male
Mice
Mice, Transgenic
Nerve Net metabolism
Nerve Net pathology
Dentate Gyrus physiopathology
Epilepsy physiopathology
Nerve Net physiopathology
Subjects
Details
- Language :
- English
- ISSN :
- 1558-8238
- Volume :
- 129
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- The Journal of clinical investigation
- Publication Type :
- Academic Journal
- Accession number :
- 30507615
- Full Text :
- https://doi.org/10.1172/JCI95731