Back to Search
Start Over
Variations of DOM quantity and compositions along WWTPs-river-lake continuum: Implications for watershed environmental management.
- Source :
-
Chemosphere [Chemosphere] 2019 Mar; Vol. 218, pp. 468-476. Date of Electronic Publication: 2018 Nov 13. - Publication Year :
- 2019
-
Abstract
- Wastewater effluent makes up an increasingly large percentage of surface water supplies, but the impacts of discharge of effluent organic matter (EfOM) on receiving riverine and lacustrine dissolved organic matter (DOM) is still largely unknown. In the present study, we investigated variations of DOM quantity and quality along wastewater treatment plants (WWTPs)-river-lake continuum during drought periods, and made a tentative discussion on its implications for watershed environmental management. We used dissolved organic carbon (DOC) concentrations, UV absorption coefficients and excitation-emission-matrixs (EEMs) fluorescence spectroscopy combined with fluorescence regional integration (FRI) to characterize EfOM and riverine and lacustrine DOM along WWTPs-river-Chaohu Lake continuum. Our results showed that changes in DOM quantity and quality in receiving waterbodies were related to EfOM discharged from WWTPs and external input of DOM along inflowing river. Specifically, we found that the ratio of protein-like/humic-like notably decreased (P < 0.05), and %humic-like increased (P < 0.01) along WWTPs-river-lake continuum. Furthermore, the recent autochthonous contribution index (BIX) and the humification index (HIX) values showed that these variations of DOM composition were attributed to microbial degradations in receiving waterbodies. We concluded that the changes of DOM quantity and quality along WWTPs-river-lake continuum had important implications for DOM behaviors, and offered some novel ideas for watershed environmental management.<br /> (Copyright © 2018 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1298
- Volume :
- 218
- Database :
- MEDLINE
- Journal :
- Chemosphere
- Publication Type :
- Academic Journal
- Accession number :
- 30497029
- Full Text :
- https://doi.org/10.1016/j.chemosphere.2018.11.037