Back to Search Start Over

The European Federation of Organisations for Medical Physics (EFOMP) White Paper: Big data and deep learning in medical imaging and in relation to medical physics profession.

Authors :
Kortesniemi M
Tsapaki V
Trianni A
Russo P
Maas A
Källman HE
Brambilla M
Damilakis J
Source :
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB) [Phys Med] 2018 Dec; Vol. 56, pp. 90-93. Date of Electronic Publication: 2018 Nov 16.
Publication Year :
2018

Abstract

Big data and deep learning will profoundly change various areas of professions and research in the future. This will also happen in medicine and medical imaging in particular. As medical physicists, we should pursue beyond the concept of technical quality to extend our methodology and competence towards measuring and optimising the diagnostic value in terms of how it is connected to care outcome. Functional implementation of such methodology requires data processing utilities starting from data collection and management and culminating in the data analysis methods. Data quality control and validation are prerequisites for the deep learning application in order to provide reliable further analysis, classification, interpretation, probabilistic and predictive modelling from the vast heterogeneous big data. Challenges in practical data analytics relate to both horizontal and longitudinal analysis aspects. Quantitative aspects of data validation, quality control, physically meaningful measures, parameter connections and system modelling for the future artificial intelligence (AI) methods are positioned firmly in the field of Medical Physics profession. It is our interest to ensure that our professional education, continuous training and competence will follow this significant global development.<br /> (Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1724-191X
Volume :
56
Database :
MEDLINE
Journal :
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Publication Type :
Editorial & Opinion
Accession number :
30449653
Full Text :
https://doi.org/10.1016/j.ejmp.2018.11.005