Back to Search
Start Over
Automatic System for Obstructive Sleep Apnea Events Detection Using Convolutional Neural Network.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2018 Jul; Vol. 2018, pp. 3975-3978. - Publication Year :
- 2018
-
Abstract
- Obstructive Sleep Apnea (OSA) is characterized by repetitive episodes of airflow reduction (hypopnea) or cessation (apnea), which, as a prevalent sleep disorder, can cause people to stop breathing for 10 to 30 seconds at a time and lead to serious problems such as daytime fatigue, impaired memory, and depression. This work intends to explore automatic detection of OSA events with 1-second annotation based on blood oxygen saturation, oronasal airflow, and ribcage and abdomen movements. Deep Learning (DL) technology, specifically, Convolutional Neural Network (CNN), is employed as a feature detector to learn the characteristics of the highorder correlation among visible data and corresponding labels. A fully-connected layer in the last stage of the CNN is connected to the output layer and constructs the desired number of outputs for sleep apnea events classification. A leave-one-out cross-validation has been conducted on the PhysioNet Sleep Database provided by St. Vincents University Hospital and University College Dublin, and an average accuracy of $79 .61$% across normal, hypopnea, and apnea, classes is achieved.
- Subjects :
- Humans
Neural Networks, Computer
Respiration
Sleep
Sleep Apnea, Obstructive
Subjects
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2018
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 30441229
- Full Text :
- https://doi.org/10.1109/EMBC.2018.8513363