Back to Search Start Over

Classification of Parkinson's disease Using Pitch Synchronous Speech Analysis.

Authors :
Appakaya SB
Sankar R
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2018 Jul; Vol. 2018, pp. 1420-1423.
Publication Year :
2018

Abstract

Human speech production is a complex task that demands synchronized cognitive and muscular functioning. Assessment of a Parkinson's disease (PD) patient's speech using computational methods is a growing field of research. Existing methodologies aim at extraction and usage of features from speech to capture perturbations due to PD. In this paper, we propose a novel methodology for feature extraction and analysis. Features are extracted from each pitch cycle of the speech and variances of the features are used for analysis making this a pitch synchronous methodology. Dimensionality problem is addressed by feature selection, which is followed by an unsupervised k-means clustering to perform classification. A dataset containing 40 participants, 22 (7 female and 15 male) PD and 18 (12 female and 6 male) healthy controls (HC) is used for evaluation. The promising results yielded from this study provides support for our hypothesis that pitch synchronous speech analysis can be useful in PD analysis.

Details

Language :
English
ISSN :
2694-0604
Volume :
2018
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
30440658
Full Text :
https://doi.org/10.1109/EMBC.2018.8512481