Back to Search Start Over

Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression.

Authors :
Liu N
Luo J
Kuang D
Xu S
Duan Y
Xia Y
Wei Z
Xie X
Yin B
Chen F
Luo S
Liu H
Wang J
Jiang K
Gong F
Tang ZH
Cheng X
Li H
Li Z
Laurence A
Wang G
Yang XP
Source :
The Journal of clinical investigation [J Clin Invest] 2019 Feb 01; Vol. 129 (2), pp. 631-646. Date of Electronic Publication: 2019 Jan 07.
Publication Year :
2019

Abstract

Macrophages perform key functions in tissue homeostasis that are influenced by the local tissue environment. Within the tumor microenvironment, tumor-associated macrophages can be altered to acquire properties that enhance tumor growth. Here, we found that lactate, a metabolite found in high concentration within the anaerobic tumor environment, activated mTORC1 that subsequently suppressed TFEB-mediated expression of the macrophage-specific vacuolar ATPase subunit ATP6V0d2. Atp6v0d2-/- mice were more susceptible to tumor growth, with enhanced HIF-2α-mediated VEGF production in macrophages that display a more protumoral phenotype. We found that ATP6V0d2 targeted HIF-2α but not HIF-1α for lysosome-mediated degradation. Blockade of HIF-2α transcriptional activity reversed the susceptibility of Atp6v0d2-/- mice to tumor development. Furthermore, in a cohort of patients with lung adenocarcinoma, expression of ATP6V0d2 and HIF-2α was positively and negatively correlated with survival, respectively, suggesting a critical role of the macrophage lactate/ATP6V0d2/HIF-2α axis in maintaining tumor growth in human patients. Together, our results highlight the ability of tumor cells to modify the function of tumor-infiltrating macrophages to optimize the microenvironment for tumor growth.

Details

Language :
English
ISSN :
1558-8238
Volume :
129
Issue :
2
Database :
MEDLINE
Journal :
The Journal of clinical investigation
Publication Type :
Academic Journal
Accession number :
30431439
Full Text :
https://doi.org/10.1172/JCI123027