Back to Search
Start Over
2D Crystals in Three Dimensions: Electronic Decoupling of Single-Layered Platelets in Colloidal Nanoparticles.
- Source :
-
Small (Weinheim an der Bergstrasse, Germany) [Small] 2018 Dec; Vol. 14 (51), pp. e1803910. Date of Electronic Publication: 2018 Nov 05. - Publication Year :
- 2018
-
Abstract
- 2D crystals, single sheets of layered materials, often show distinct properties desired for optoelectronic applications, such as larger and direct band gaps, valley- and spin-orbit effects. Being atomically thin, the low amount of material is a bottleneck in photophysical and photochemical applications. Here, the formation of stacks of 2D crystals intercalated with small surfactant molecules is proposed. It is shown, using first principles calculations, that the very short surfactant methyl amine electronically decouples the layers. The indirect-direct band gap transition characteristic for Group 6 transition metal dichalcogenides is demonstrated experimentally by observing the emergence of a strong photoluminescence signal for ethoxide-intercalated WSe <subscript>2</subscript> and MoSe <subscript>2</subscript> multilayered nanoparticles with lateral size of about 10 nm and beyond. The proposed hybrid materials offer the highest possible density of the 2D crystals with electronic properties typical of monolayers. Variation of the surfactant's chemical potential allows fine-tuning of electronic properties and potentially elimination of trap states caused by defects.<br /> (© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
Details
- Language :
- English
- ISSN :
- 1613-6829
- Volume :
- 14
- Issue :
- 51
- Database :
- MEDLINE
- Journal :
- Small (Weinheim an der Bergstrasse, Germany)
- Publication Type :
- Academic Journal
- Accession number :
- 30398000
- Full Text :
- https://doi.org/10.1002/smll.201803910