Back to Search
Start Over
Phenylalanine enhances innate immune response to clear ceftazidime-resistant Vibrio alginolyticus in Danio rerio.
- Source :
-
Fish & shellfish immunology [Fish Shellfish Immunol] 2019 Jan; Vol. 84, pp. 912-919. Date of Electronic Publication: 2018 Oct 30. - Publication Year :
- 2019
-
Abstract
- Antibiotic-resistant bacteria becomes a major threat to the economy and food safety in aquaculture. Although the antibiotic-dependent strategy is still the mostly adopted option, the development of antibiotic-free approach is urgently needed to ameliorate the severe situation of the global antibiotic resistance. In the present study, we showed that modulating the metabolism of zebrafish, Danio reiro, would enhance D. rerio to clear ceftazidime-resistant Vibrio alginoyticus (Caz-R) in vivo. By generating Caz-R in vitro, we found Caz-R stays longer than ceftazidime-sensitive V. alginoyticus (Caz-S) in D. rerio, where Caz-R induced less potent immune response than that of Caz-S. The differential immune response was associated with different metabolism of the host. Through functional metabolomics, we identified a crucial biomarker, phenylalanine. The abundance of phenylalanine was increased in both of Caz-S and Caz-R infected hosts but the abundance was higher in Caz-S infected group. This specific difference indicated phenylalanine could be a metabolite required to clear Caz-R by the host. Exogenous phenylalanine would enhance the host's ability to remove Caz-R, which was through upregulated production of lysozyme and C3b. Thus, our study demonstrates a novel strategy to boost host's immune response to combat against antibiotic-resistant bacteria.<br /> (Copyright © 2018 Elsevier Ltd. All rights reserved.)
- Subjects :
- Animals
Fish Diseases immunology
Immunity, Innate genetics
Microbial Sensitivity Tests
Vibrio Infections immunology
Vibrio alginolyticus physiology
Anti-Bacterial Agents pharmacology
Ceftazidime pharmacology
Drug Resistance, Bacterial immunology
Phenylalanine metabolism
Vibrio alginolyticus drug effects
Zebrafish genetics
Zebrafish immunology
Subjects
Details
- Language :
- English
- ISSN :
- 1095-9947
- Volume :
- 84
- Database :
- MEDLINE
- Journal :
- Fish & shellfish immunology
- Publication Type :
- Academic Journal
- Accession number :
- 30389644
- Full Text :
- https://doi.org/10.1016/j.fsi.2018.10.071