Back to Search Start Over

Box Behnken design of siRNA-loaded liposomes for the treatment of a murine model of ocular keratitis caused by Acanthamoeba.

Authors :
Zorzi GK
Schuh RS
Maschio VJ
Brazil NT
Rott MB
Teixeira HF
Source :
Colloids and surfaces. B, Biointerfaces [Colloids Surf B Biointerfaces] 2019 Jan 01; Vol. 173, pp. 725-732. Date of Electronic Publication: 2018 Oct 18.
Publication Year :
2019

Abstract

Acanthamoeba keratitis is an ophthalmic disease with no specific treatment that specially affects contact lens users. The silencing of serine phosphatase (SP) and glycogen phosphorylase (GP) proteins produced by Acanthamoeba has been shown to significantly reduce the cytopathic effect, although no vehicle was proposed yet to deliver the siRNA sequences to the trophozoites. In this study, PEGylated cationic liposomes were proposed and optimized using Box-Behnken design. The influence of DOTAP:DOPE ratio, DSPE-PEG concentration, and siRNA/DOTAP charge ratio were evaluated over both biological response and physicochemical properties of liposomes. The ratio of DOTAP:DOPE had an effect in the trophozoite activity whereas the charge ratio influenced both size and protease activity. The predicted values were very close to the observed values, yielding a formulation with good activity and toxicity profile, which was used in the following experiments. A murine model of ocular keratitis was treated with siGP + siSP-loaded liposomes, as well as their respective controls, and combined treatment of liposomes and chlorhexidine. After 15 days of eight daily administrations, the liposomal complex combined with chlorhexidine was the only treatment able to reverse the more severe lesions associated with keratitis. There was 60% complete regression in corneal damage, with histological sections demonstrating the presence of an integral epithelium, without lymphocytic infiltrate. The set of results demonstrate the efficacy of a combined therapy based on siRNA with classical drugs for a better prognosis of keratitis caused by Acanthamoeba.<br /> (Copyright © 2018 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-4367
Volume :
173
Database :
MEDLINE
Journal :
Colloids and surfaces. B, Biointerfaces
Publication Type :
Academic Journal
Accession number :
30384269
Full Text :
https://doi.org/10.1016/j.colsurfb.2018.10.044