Back to Search Start Over

Adsorption of Fibronectin Fragment on Surfaces Using Fully Atomistic Molecular Dynamics Simulations.

Authors :
Liamas E
Kubiak-Ossowska K
Black RA
Thomas ORT
Zhang ZJ
Mulheran PA
Source :
International journal of molecular sciences [Int J Mol Sci] 2018 Oct 25; Vol. 19 (11). Date of Electronic Publication: 2018 Oct 25.
Publication Year :
2018

Abstract

The effect of surface chemistry on the adsorption characteristics of a fibronectin fragment (FNIII <superscript>8⁻10</superscript> ) was investigated using fully atomistic molecular dynamics simulations. Model surfaces were constructed to replicate self-assembled monolayers terminated with methyl, hydroxyl, amine, and carboxyl moieties. It was found that adsorption of FNIII <superscript>8⁻10</superscript> on charged surfaces is rapid, specific, and driven by electrostatic interactions, and that the anchoring residues are either polar uncharged or of opposing charge to that of the targeted surfaces. On charged surfaces the presence of a strongly bound layer of water molecules and ions hinders FNIII <superscript>8⁻10</superscript> adsorption. In contrast, adsorption kinetics on uncharged surfaces are slow and non-specific, as they are driven by van der Waals interactions, and the anchoring residues are polar uncharged. Due to existence of a positively charged area around its cell-binding region, FNIII <superscript>8⁻10</superscript> is available for subsequent cell binding when adsorbed on a positively charged surface, but not when adsorbed on a negatively charged surface. On uncharged surfaces, the availability of the fibronectin fragment's cell-binding region is not clearly distinguished because adsorption is much less specific.

Details

Language :
English
ISSN :
1422-0067
Volume :
19
Issue :
11
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
30366398
Full Text :
https://doi.org/10.3390/ijms19113321