Back to Search
Start Over
Presynaptic mGluRs Control the Duration of Endocannabinoid-Mediated DSI.
- Source :
-
The Journal of neuroscience : the official journal of the Society for Neuroscience [J Neurosci] 2018 Dec 05; Vol. 38 (49), pp. 10444-10453. Date of Electronic Publication: 2018 Oct 24. - Publication Year :
- 2018
-
Abstract
- GABA synapses in the brain undergo depolarization-induced suppression of inhibition (DSI) that requires activation of presynaptic cannabinoid type 1 receptors (CB <subscript>1</subscript> Rs). The brevity of DSI, lasting ∼1 min in most brain regions, has been ascribed to the transient production of 2-arachidonoylglycerol (2-AG). Here, we propose that the duration of DSI is controlled by heterologous interactions between presynaptic mGluRs and CB <subscript>1</subscript> Rs. By examining GABA synapses on parvocellular corticotropin-releasing hormone-expressing neurons in the paraventricular nucleus of the hypothalamus (PVN) of male and female mice, we show that DSI decays quickly in experimental conditions in which both GABA and glutamate are released from adjacent nerve terminals. Pharmacological inhibition of group I mGluRs prolongs DSI, whereas prior activation of mGluRs inhibits DSI, collectively suggesting that group I mGluRs quench presynaptic CB <subscript>1</subscript> R signaling. When photostimulation of genetically identified terminals is used to release only GABA, CB <subscript>1</subscript> R-dependent DSI persists for many minutes. Under the same conditions, activation of group I mGluRs reestablishes classical, transient DSI. The long-lasting DSI observed when GABA synapses are independently recruited functionally uncouples inhibitory input to PVN neurons. These observations suggest that heterologous interactions between mGluRs and CB <subscript>1</subscript> Rs control the temporal window of DSI at GABA synapses, providing evidence for a powerful new way to affect functional circuit connectivity in the brain. SIGNIFICANCE STATEMENT Postsynaptic depolarization liberates endocannabinoids, resulting in a rapid and transient decrease in release probability at GABA synapses. We discovered that mGluRs control the duration of depolarization-induced suppression of inhibition (DSI), most likely through heterologous desensitization of cannabinoid type 1 receptors by presynaptic mGluR <subscript>5</subscript> By shortening the duration of DSI, mGluRs control the temporal window for retrograde signaling at GABA synapses. Physiological or pathological changes that affect glutamate spillover may profoundly affect network excitability by shifting the duration of cannabinoid inhibition at GABA synapses.<br /> (Copyright © 2018 the authors 0270-6474/18/3810444-10$15.00/0.)
- Subjects :
- Animals
Endocannabinoids pharmacology
Female
Glutamic Acid metabolism
Inhibitory Postsynaptic Potentials drug effects
Male
Methoxyhydroxyphenylglycol analogs & derivatives
Methoxyhydroxyphenylglycol pharmacology
Mice
Mice, Inbred C57BL
Mice, Transgenic
Optogenetics methods
Receptor, Cannabinoid, CB1 chemistry
Receptors, Metabotropic Glutamate chemistry
Receptors, Presynaptic chemistry
gamma-Aminobutyric Acid metabolism
Endocannabinoids physiology
Inhibitory Postsynaptic Potentials physiology
Receptor, Cannabinoid, CB1 metabolism
Receptors, Metabotropic Glutamate metabolism
Receptors, Presynaptic metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1529-2401
- Volume :
- 38
- Issue :
- 49
- Database :
- MEDLINE
- Journal :
- The Journal of neuroscience : the official journal of the Society for Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 30355625
- Full Text :
- https://doi.org/10.1523/JNEUROSCI.1097-18.2018