Back to Search
Start Over
Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome.
- Source :
-
Stem cell research & therapy [Stem Cell Res Ther] 2018 Oct 24; Vol. 9 (1), pp. 268. Date of Electronic Publication: 2018 Oct 24. - Publication Year :
- 2018
-
Abstract
- Background: Efficient and sustained hematopoietic recovery after hematopoietic stem cell or bone marrow transplantation is supported by paracrine signaling from specific subpopulations of mesenchymal stromal cells (MSCs). Here, we considered whether in vitro mechanopriming of human MSCs could be administered to predictively and significantly improve in vivo hematopoietic recovery after irradiation injury.<br />Methods: First, we implemented regression modeling to identify eight MSC-secreted proteins that correlated strongly with improved rescue from radiation damage, including hematopoietic recovery, in a murine model of hematopoietic failure. Using these partial least squares regression (PLSR) model parameters, we then predicted recovery potential of MSC populations that were culture expanded on substrata of varying mechanical stiffness. Lastly, we experimentally validated these predictions using an in vitro co-culture model of hematopoiesis and using new in vivo experiments for the same irradiation injury model used to generate survival predictions.<br />Results: MSCs grown on the least stiff (elastic moduli ~ 1 kPa) of these polydimethylsiloxane (PDMS) substrata secreted high concentrations of key proteins identified in regression modeling, at concentrations comparable to those secreted by minor subpopulations of MSCs shown previously to be effective in supporting such radiation rescue. We confirmed that these MSCs expanded on PDMS could promote hematopoiesis in an in vitro co-culture model with hematopoietic stem and progenitor cells (HSPCs). Further, MSCs cultured on PDMS of highest stiffness (elastic moduli ~ 100 kPa) promoted expression of CD123 <superscript>+</superscript> HSPCs, indicative of myeloid differentiation. Systemic administration of mechanoprimed MSCs resulted in improved mouse survival and weight recovery after bone marrow ablation, as compared with both standard MSC expansion on stiffer materials and with biophysically sorted MSC subpopulations. Additionally, we observed recovery of white blood cells, platelets, and red blood cells, indicative of complete recovery of all hematopoietic lineages.<br />Conclusions: These results demonstrate that computational techniques to identify MSC biomarkers can be leveraged to predict and engineer therapeutically effective MSC phenotypes defined by mechanoprimed secreted factors, for translational applications including hematopoietic recovery.
- Subjects :
- Animals
Biomarkers metabolism
Biomechanical Phenomena
Blood Platelets cytology
Blood Platelets physiology
Cell Differentiation
Coculture Techniques
Cytokines genetics
Cytokines metabolism
Dimethylpolysiloxanes chemistry
Elastic Modulus
Erythrocytes cytology
Erythrocytes physiology
Gamma Rays
Gene Expression
Hematopoiesis drug effects
Hematopoiesis genetics
Hematopoiesis radiation effects
Hematopoietic Stem Cells cytology
Hematopoietic Stem Cells drug effects
Hematopoietic Stem Cells metabolism
Humans
Intercellular Signaling Peptides and Proteins genetics
Intercellular Signaling Peptides and Proteins metabolism
Leukocytes cytology
Leukocytes physiology
Mesenchymal Stem Cells cytology
Mesenchymal Stem Cells drug effects
Mesenchymal Stem Cells metabolism
Mice
Regression Analysis
Survival Analysis
Tissue Scaffolds
Whole-Body Irradiation
Dimethylpolysiloxanes pharmacology
Hematopoietic Stem Cell Transplantation
Hematopoietic Stem Cells radiation effects
Mechanotransduction, Cellular
Mesenchymal Stem Cell Transplantation
Mesenchymal Stem Cells radiation effects
Subjects
Details
- Language :
- English
- ISSN :
- 1757-6512
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Stem cell research & therapy
- Publication Type :
- Academic Journal
- Accession number :
- 30352620
- Full Text :
- https://doi.org/10.1186/s13287-018-0982-2