Back to Search Start Over

Morphogenetic degeneracies in the actomyosin cortex.

Authors :
Naganathan SR
Fürthauer S
Rodriguez J
Fievet BT
Jülicher F
Ahringer J
Cannistraci CV
Grill SW
Source :
ELife [Elife] 2018 Oct 22; Vol. 7. Date of Electronic Publication: 2018 Oct 22.
Publication Year :
2018

Abstract

One of the great challenges in biology is to understand the mechanisms by which morphogenetic processes arise from molecular activities. We investigated this problem in the context of actomyosin-based cortical flow in C. elegans zygotes, where large-scale flows emerge from the collective action of actomyosin filaments and actin binding proteins (ABPs). Large-scale flow dynamics can be captured by active gel theory by considering force balances and conservation laws in the actomyosin cortex. However, which molecular activities contribute to flow dynamics and large-scale physical properties such as viscosity and active torque is largely unknown. By performing a candidate RNAi screen of ABPs and actomyosin regulators we demonstrate that perturbing distinct molecular processes can lead to similar flow phenotypes. This is indicative for a 'morphogenetic degeneracy' where multiple molecular processes contribute to the same large-scale physical property. We speculate that morphogenetic degeneracies contribute to the robustness of bulk biological matter in development.<br />Competing Interests: SN, SF, JR, BF, CC, SG No competing interests declared, FJ, JA Reviewing editor, eLife<br /> (© 2018, Naganathan et al.)

Details

Language :
English
ISSN :
2050-084X
Volume :
7
Database :
MEDLINE
Journal :
ELife
Publication Type :
Academic Journal
Accession number :
30346273
Full Text :
https://doi.org/10.7554/eLife.37677