Back to Search Start Over

Landau Velocity for Collective Quantum Hall Breakdown in Bilayer Graphene.

Authors :
Yang W
Graef H
Lu X
Zhang G
Taniguchi T
Watanabe K
Bachtold A
Teo EHT
Baudin E
Bocquillon E
Fève G
Berroir JM
Carpentier D
Goerbig MO
Plaçais B
Source :
Physical review letters [Phys Rev Lett] 2018 Sep 28; Vol. 121 (13), pp. 136804.
Publication Year :
2018

Abstract

Breakdown of the quantum Hall effect (QHE) is commonly associated with an electric field approaching the inter-Landau-level (LL) Zener field, the ratio of the Landau gap and the cyclotron radius. Eluded in semiconducting heterostructures, in spite of extensive investigation, the intrinsic Zener limit is reported here using high-mobility bilayer graphene and high-frequency current noise. We show that collective excitations arising from electron-electron interactions are essential. Beyond a noiseless ballistic QHE regime a large super-Poissonian shot noise signals the breakdown via inter-LL scattering. The breakdown is ultimately limited by collective excitations in a regime where phonon and impurity scattering are quenched. The breakdown mechanism can be described by a Landau critical velocity as it bears strong similarities with the roton mechanism of superfluids. In addition, we show that breakdown is a precursor of an electric-field induced QHE-metal transition.

Details

Language :
English
ISSN :
1079-7114
Volume :
121
Issue :
13
Database :
MEDLINE
Journal :
Physical review letters
Publication Type :
Academic Journal
Accession number :
30312074
Full Text :
https://doi.org/10.1103/PhysRevLett.121.136804