Back to Search
Start Over
Computational B-cell epitope identification and production of neutralizing murine antibodies against Atroxlysin-I.
- Source :
-
Scientific reports [Sci Rep] 2018 Oct 08; Vol. 8 (1), pp. 14904. Date of Electronic Publication: 2018 Oct 08. - Publication Year :
- 2018
-
Abstract
- Epitope identification is essential for developing effective antibodies that can detect and neutralize bioactive proteins. Computational prediction is a valuable and time-saving alternative for experimental identification. Current computational methods for epitope prediction are underused and undervalued due to their high false positive rate. In this work, we targeted common properties of linear B-cell epitopes identified in an individual protein class (metalloendopeptidases) and introduced an alternative method to reduce the false positive rate and increase accuracy, proposing to restrict predictive models to a single specific protein class. For this purpose, curated epitope sequences from metalloendopeptidases were transformed into frame-shifted Kmers (3 to 15 amino acid residues long). These Kmers were decomposed into a matrix of biochemical attributes and used to train a decision tree classifier. The resulting prediction model showed a lower false positive rate and greater area under the curve when compared to state-of-the-art methods. Our predictions were used for synthesizing peptides mimicking the predicted epitopes for immunization of mice. A predicted linear epitope that was previously undetected by an experimental immunoassay was able to induce neutralizing-antibody production in mice. Therefore, we present an improved prediction alternative and show that computationally identified epitopes can go undetected during experimental mapping.
- Subjects :
- Algorithms
Amino Acid Sequence
Amino Acids chemistry
Animals
Decision Trees
Epitope Mapping
Epitopes, B-Lymphocyte chemistry
Female
Immunization
Metalloproteases metabolism
Mice, Inbred BALB C
Models, Molecular
Peptides chemistry
ROC Curve
Reproducibility of Results
Antibodies, Neutralizing biosynthesis
Computational Biology methods
Epitopes, B-Lymphocyte immunology
Snake Venoms immunology
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 8
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 30297733
- Full Text :
- https://doi.org/10.1038/s41598-018-33298-x