Back to Search
Start Over
The Antimicrobial Effect of a Commercial Mixture of Natural Antimicrobials Against Escherichia coli O157:H7.
- Source :
-
Foodborne pathogens and disease [Foodborne Pathog Dis] 2019 Feb; Vol. 16 (2), pp. 119-129. Date of Electronic Publication: 2018 Oct 02. - Publication Year :
- 2019
-
Abstract
- Ruminants are important reservoirs of E. coli O157:H7 and are considered as the major source of most foodborne outbreaks (e.g., 2017 outbreak in Germany, 2014 and 2016 outbreaks in United States, all linked to beef products). A promising strategy to reduce E. coli O157 is using antimicrobials to reduce the pathogen levels and/or virulence within the animal gastrointestinal tract and thus foodborne disease. The aim of the study was to determine the efficacy of a commercial mixture of natural antimicrobials against E. coli O157. The minimum inhibitory concentration and minimum bactericidal concentration of the antimicrobial were quantitatively determined and found to be 0.5% and 0.75% (v/v) of the natural antimicrobial, respectively. Microbial growth kinetics was also used to determine the effect of the antimicrobial on the pathogen. The natural antimicrobial affected the cell membrane of E. coli O157, as demonstrated by the increase in relative electric conductivity and increase in protein and nucleic acid release. The antimicrobial was also able to significantly reduce the concentration on E. coli O157 in a model rumen system. Biofilm assays showed that subinhibitory concentrations of the antimicrobial significantly reduced the E. coli 0157 biofilm forming capacity without influencing pathogen growth. In addition, the natural antimicrobial was able to reduce motility and exopolysaccharide production. Subinhibitory concentrations of the antimicrobial had no effect on AI-2 production. These findings suggest that the natural antimicrobial exerts an antimicrobial effect against E. coli O157 in vitro and in a model rumen system and could be potentially used to control this pathogen in the animal gut. The results also indicate that subinhibitory concentrations of the antimicrobial effectively reduce biofilm formation, motility, and exopolysaccharide production.
- Subjects :
- Animals
Biofilms drug effects
Biofilms growth & development
Cattle
Cell Membrane Permeability
Electric Conductivity
Escherichia coli O157 growth & development
Escherichia coli O157 physiology
Female
Homoserine analogs & derivatives
Homoserine drug effects
Humans
Lactones
Microbial Sensitivity Tests
Polysaccharides, Bacterial metabolism
Rumen drug effects
Rumen microbiology
Anti-Infective Agents pharmacology
Biological Products pharmacology
Escherichia coli O157 drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1556-7125
- Volume :
- 16
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Foodborne pathogens and disease
- Publication Type :
- Academic Journal
- Accession number :
- 30277811
- Full Text :
- https://doi.org/10.1089/fpd.2018.2465