Back to Search Start Over

Thermal Sensitivity of Gypsy Moth (Lepidoptera: Erebidae) During Larval and Pupal Development.

Authors :
Banahene N
Salem SK
Faske TM
Byrne HM
Glackin M
Agosta SJ
Eckert AJ
Grayson KL
Thompson LM
Source :
Environmental entomology [Environ Entomol] 2018 Dec 07; Vol. 47 (6), pp. 1623-1631.
Publication Year :
2018

Abstract

As global temperatures rise, thermal limits play an increasingly important role in determining the persistence and spread of invasive species. Gypsy moth (Lymantria dispar L. Lepidoptera: Erebidae) in North America provides an ideal system for studying the effect of high temperatures on invasive species performance. Here, we used fluctuating temperature regimes and exposed gypsy moth at specific points in development (first-fourth instar, pupa) to cycles of favorable (22-28°C) or high-temperature treatments (30-36°C, 32-38°C, 34-40°C) for either 2 or 7 d. We measured survival, growth, and prolonged effects of exposure on development time and pupal mass. Survival generally decreased as the experimental temperature treatment and duration of exposure increased for all instars and pupae, with a narrow threshold for lethal effects. In response to increasing temperature and magnified by longer exposure times, growth abruptly declined for third instars and development time increased for pupae. For those surviving the 2-d exposure treatment, development time to pupation increased for all instars, but we did not find consistent effects on final pupal mass. These negative effects of high temperature provide important data on the susceptibility of gypsy moth to heat at different points in development. This work improves our understanding of thermal limits to growth and development in gypsy moth and can aid in determining invasion potential under current and future climates.

Details

Language :
English
ISSN :
1938-2936
Volume :
47
Issue :
6
Database :
MEDLINE
Journal :
Environmental entomology
Publication Type :
Academic Journal
Accession number :
30272116
Full Text :
https://doi.org/10.1093/ee/nvy149