Back to Search Start Over

Deformable Registration of Histological Cancer Margins to Gross Hyperspectral Images using Demons.

Authors :
Halicek M
Little JV
Wang X
Chen ZG
Patel M
Griffith CC
El-Deiry MW
Saba NF
Chen AY
Fei B
Source :
Proceedings of SPIE--the International Society for Optical Engineering [Proc SPIE Int Soc Opt Eng] 2018 Feb; Vol. 10581. Date of Electronic Publication: 2018 Mar 06.
Publication Year :
2018

Abstract

Hyperspectral imaging (HSI), a non-contact optical imaging technique, has been recently used along with machine learning technique to provide diagnostic information about ex-vivo surgical specimens for optical biopsy. The computer-aided diagnostic approach requires accurate ground truths for both training and validation. This study details a processing pipeline for registering the cancer-normal margin from a digitized histological image to the gross-level HSI of a tissue specimen. Our work incorporates an initial affine and control-point registration followed by a deformable Demons-based registration of the moving mask obtained from the histological image to the fixed mask made from the HS image. To assess registration quality, Dice similarity coefficient (DSC) measures the image overlap, visual inspection is used to evaluate the margin, and average target registration error (TRE) of needle-bored holes measures the registration error between the histologic and HSI images. Excised tissue samples from seventeen patients, 11 head and neck squamous cell carcinoma (HNSCCa) and 6 thyroid carcinoma, were registered according to the proposed method. Three registered specimens are illustrated in this paper, which demonstrate the efficacy of the registration workflow. Further work is required to apply the technique to more patient data and investigate the ability of this procedure to produce suitable gold standards for machine learning validation.

Details

Language :
English
ISSN :
0277-786X
Volume :
10581
Database :
MEDLINE
Journal :
Proceedings of SPIE--the International Society for Optical Engineering
Publication Type :
Academic Journal
Accession number :
30220773
Full Text :
https://doi.org/10.1117/12.2293165