Back to Search Start Over

A sparse representation and dictionary learning based algorithm for image restoration in the presence of Rician noise.

Authors :
Chen W
You J
Pan B
Liang Z
Chen B
Source :
Neurocomputing [Neurocomputing (Amst)] 2018; Vol. 286, pp. 130-140. Date of Electronic Publication: 2018 Apr 19.
Publication Year :
2018

Abstract

Rician noise removal for Magnetic Resonance Imaging (MRI) is very important because the MRI has been widely used in various clinical applications and the associated Rician noise deteriorates the image quality and causes errors in interpreting the images. Great efforts have recently been devoted to develop the corresponding noise-removal algorithms, particularly the development based on the newly-established Total Variation (TV) theorem. However, all the TV-based algorithms depend mainly on the gradient information and have been shown to produce the so called "blocky" artifact, which also deteriorates the image quality and causes image interpretation errors. In order to avoid producing the artifact, this paper presents a new de-noising model based on sparse representation and dictionary learning. The Split Bregman Iteration strategy is employed to implement the model. Furthermore, an appropriate dictionary is designed by the use of the Kernel Singular Value Decomposition method, resulting in a new Rician noise removal algorithm. Compared with other de-noising algorithms, the presented new algorithm can achieve superior performance, in terms of quantitative measures of the Structural Similarity Index and Peak Signal to Noise Ratio, by a series of experiments using different images in the presence of Rician noise.

Details

Language :
English
ISSN :
0925-2312
Volume :
286
Database :
MEDLINE
Journal :
Neurocomputing
Publication Type :
Academic Journal
Accession number :
30214129
Full Text :
https://doi.org/10.1016/j.neucom.2018.01.066