Back to Search
Start Over
Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism.
- Source :
-
Scientific reports [Sci Rep] 2018 Sep 13; Vol. 8 (1), pp. 13730. Date of Electronic Publication: 2018 Sep 13. - Publication Year :
- 2018
-
Abstract
- Arterial media calcification is associated with diabetes mellitus. Previous studies have shown that advanced glycation end products (AGEs) are responsible for vascular smooth muscle cell (VSMC) calcification, but the underlying mechanisms remain unclear. Hypoxia-inducible factor-1α (HIF-1α), one of the major factors during hypoxia, and pyruvate dehydrogenase kinase 4 (PDK4), an important mitochondrial matrix enzyme in cellular metabolism shift, have been reported in VSMC calcification. The potential link among HIF-1α, PDK4, and AGEs-induced vascular calcification was investigated in this study. We observed that AGEs elevated HIF-1α and PDK4 expression levels in a dose-dependent manner and that maximal stimulation was attained at 24 h. Two important HIF-1α-regulated genes, vascular endothelial growth factor A (VEGFA) and glucose transporter 1 (GLUT-1), were significantly increased after AGEs exposure. Stabilization or nuclear translocation of HIF-1α increased PDK4 expression. PDK4 inhibition attenuated AGEs-induced VSMC calcification, which was evaluated by measuring the calcium content, alkaline phosphatase (ALP) activity and runt-related transcription factor 2 (RUNX2) expression levels and by Alizarin red S staining. In addition, the glucose consumption, lactate production, key enzymes of glucose metabolism and oxygen consumption rate (OCR) were decreased during AGEs-induced VSMC calcification. In conclusion, this study suggests that AGEs accelerate vascular calcification partly through the HIF-1α/PDK4 pathway and suppress glucose metabolism.
- Subjects :
- Animals
Core Binding Factor Alpha 1 Subunit genetics
Diabetes Mellitus genetics
Diabetes Mellitus metabolism
Diabetes Mellitus pathology
Gene Expression Regulation
Glucose Transporter Type 1 genetics
Humans
Hypoxia-Inducible Factor 1, alpha Subunit metabolism
Lactic Acid metabolism
Muscle, Smooth, Vascular metabolism
Muscle, Smooth, Vascular pathology
Myocytes, Smooth Muscle metabolism
Myocytes, Smooth Muscle pathology
Oxygen Consumption genetics
Protein Kinases metabolism
Rats
Tunica Media metabolism
Tunica Media pathology
Vascular Calcification pathology
Vascular Endothelial Growth Factor A genetics
Glucose metabolism
Glycation End Products, Advanced genetics
Hypoxia-Inducible Factor 1, alpha Subunit genetics
Protein Kinases genetics
Vascular Calcification genetics
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 8
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 30213959
- Full Text :
- https://doi.org/10.1038/s41598-018-31877-6