Back to Search Start Over

3D Bioprinting and Stem Cells.

Authors :
Moore CA
Shah NN
Smith CP
Rameshwar P
Source :
Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2018; Vol. 1842, pp. 93-103.
Publication Year :
2018

Abstract

Three-dimensional (3D) in vitro modeling is increasingly relevant as two-dimensional (2D) cultures have been recognized with limits to recapitulate the complex endogenous conditions in the body. Additionally, fabrication technology is more accessible than ever. Bioprinting, in particular, is an additive manufacturing technique that expands the capabilities of in vitro studies by precisely depositing cells embedded within a 3D biomaterial scaffold that acts as temporary extracellular matrix (ECM). More importantly, bioprinting has vast potential for customization. This allows users to manipulate parameters such as scaffold design, biomaterial selection, and cell types, to create specialized biomimetic 3D systems.The development of a 3D system is important to recapitulate the bone marrow (BM) microenvironment since this particular organ cannot be mimicked with other methods such as organoids. The 3D system can be used to study the interactions between native BM cells and metastatic breast cancer cells (BCCs). Although not perfect, such a system can recapitulate the BM microenvironment. Mesenchymal stem cells (MSCs), a key population within the BM, are known to communicate with BCCs invading the BM and to aid in their transition into dormancy. Dormant BCCs are cycling quiescent and resistant to chemotherapy, which allows them to survive in the BM to resurge even after decades. These persisting BCCs have been identified as the stem cell subset. These BCCs exhibit self-renewal and can be induced to differentiate. More importantly, this BCC subset can initiate tumor formation, exert chemoresistance, and form gap junction with endogenous BM stroma, including MSCs. The bioprinted model detailed in this chapter creates a MSC-BC stem cell coculture system to study intercellular interactions in a model that is more representative of the endogenous 3D microenvironment than conventional 2D cultures. The method can reliably seed primary BM MSCs and BC stem cells within a bioprinted scaffold fabricated from CELLINK Bioink. Since bioprinting is a highly customizable technique, parameters described in this method (i.e., cell-cell ratio, scaffold dimensions) can easily be altered to serve other applications, including studies on hematopoietic regulation.

Details

Language :
English
ISSN :
1940-6029
Volume :
1842
Database :
MEDLINE
Journal :
Methods in molecular biology (Clifton, N.J.)
Publication Type :
Academic Journal
Accession number :
30196404
Full Text :
https://doi.org/10.1007/978-1-4939-8697-2_7