Back to Search Start Over

Ehrlichia type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation.

Authors :
Yan Q
Lin M
Huang W
Teymournejad O
Johnson JM
Hays FA
Liang Z
Li G
Rikihisa Y
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2018 Sep 18; Vol. 115 (38), pp. E8977-E8986. Date of Electronic Publication: 2018 Sep 04.
Publication Year :
2018

Abstract

Ehrlichia chaffeensis , an obligatory intracellular bacterium, infects monocytes/macrophages by sequestering a regulator of endosomal traffic, the small GTPase RAB5, on its membrane-bound inclusions to avoid routing to host-cell phagolysosomes. How RAB5 is sequestered on ehrlichial inclusions is poorly understood, however. We found that native Ehrlichia translocated factor-2 (Etf-2), a previously predicted effector of the Ehrlichia type IV secretion system, and recombinant Etf-2 (cloned into the Ehrlichia genome) are secreted into the host-cell cytoplasm and localize to ehrlichial inclusions. Ectopically expressed Etf-2-GFP also localized to inclusions and membranes of early endosomes marked with RAB5 and interacted with GTP-bound RAB5 but not with a GDP-bound RAB5. Etf-2, although lacking a RAB GTPase-activating protein (GAP) Tre2-Bub2-Cdc16 (TBC) domain, contains two conserved TBC domain motifs, namely an Arg finger and a Gln finger, and site-directed mutagenesis revealed that both Arg <superscript>188</superscript> and Gln <superscript>245</superscript> are required for Etf-2 localization to early endosomes. The yeast two-hybrid assay and microscale thermophoresis revealed that Etf-2 binds tightly to GTP-bound RAB5 but not to GDP-bound RAB5. However, Etf-2 lacks RAB5-specific GAP activity. Etf-2 localized to bead-containing phagosomes as well as endosomes containing beads coated with the C-terminal fragment of EtpE (entry-triggering protein of Ehrlichia ), an Ehrlichia outer-membrane invasin, and significantly delayed RAB5 dissociation from and RAB7 localization to phagosomes/endosomes and RABGAP5 localization to endosomes. Thus, binding of Etf-2 to RAB5-GTP appears to delay RAB5 inactivation by impeding RABGAP5 localization to endosomes. This suggests a unique mechanism by which RAB5 is sequestered on ehrlichial inclusions to benefit bacterial survival and replication.<br />Competing Interests: The authors declare no conflict of interest.<br /> (Copyright © 2018 the Author(s). Published by PNAS.)

Details

Language :
English
ISSN :
1091-6490
Volume :
115
Issue :
38
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
30181274
Full Text :
https://doi.org/10.1073/pnas.1806904115