Back to Search Start Over

Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler.

Authors :
Chen Y
Zhang Y
Wang Y
Zhang L
Brinkman EK
Adam SA
Goldman R
van Steensel B
Ma J
Belmont AS
Source :
The Journal of cell biology [J Cell Biol] 2018 Nov 05; Vol. 217 (11), pp. 4025-4048. Date of Electronic Publication: 2018 Aug 28.
Publication Year :
2018

Abstract

While nuclear compartmentalization is an essential feature of three-dimensional genome organization, no genomic method exists for measuring chromosome distances to defined nuclear structures. In this study, we describe TSA-Seq, a new mapping method capable of providing a "cytological ruler" for estimating mean chromosomal distances from nuclear speckles genome-wide and for predicting several Mbp chromosome trajectories between nuclear compartments without sophisticated computational modeling. Ensemble-averaged results in K562 cells reveal a clear nuclear lamina to speckle axis correlated with a striking spatial gradient in genome activity. This gradient represents a convolution of multiple spatially separated nuclear domains including two types of transcription "hot zones." Transcription hot zones protruding furthest into the nuclear interior and positioning deterministically very close to nuclear speckles have higher numbers of total genes, the most highly expressed genes, housekeeping genes, genes with low transcriptional pausing, and super-enhancers. Our results demonstrate the capability of TSA-Seq for genome-wide mapping of nuclear structure and suggest a new model for spatial organization of transcription and gene expression.<br /> (© 2018 Chen et al.)

Details

Language :
English
ISSN :
1540-8140
Volume :
217
Issue :
11
Database :
MEDLINE
Journal :
The Journal of cell biology
Publication Type :
Academic Journal
Accession number :
30154186
Full Text :
https://doi.org/10.1083/jcb.201807108