Back to Search Start Over

Multiple facets of biodiversity drive the diversity-stability relationship.

Authors :
Craven D
Eisenhauer N
Pearse WD
Hautier Y
Isbell F
Roscher C
Bahn M
Beierkuhnlein C
Bönisch G
Buchmann N
Byun C
Catford JA
Cerabolini BEL
Cornelissen JHC
Craine JM
De Luca E
Ebeling A
Griffin JN
Hector A
Hines J
Jentsch A
Kattge J
Kreyling J
Lanta V
Lemoine N
Meyer ST
Minden V
Onipchenko V
Polley HW
Reich PB
van Ruijven J
Schamp B
Smith MD
Soudzilovskaia NA
Tilman D
Weigelt A
Wilsey B
Manning P
Source :
Nature ecology & evolution [Nat Ecol Evol] 2018 Oct; Vol. 2 (10), pp. 1579-1587. Date of Electronic Publication: 2018 Aug 27.
Publication Year :
2018

Abstract

A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity-stability relationship remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investigate the roles of species richness, phylogenetic diversity and both the diversity and community-weighted mean of functional traits representing the 'fast-slow' leaf economics spectrum in driving the diversity-stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species. Contrary to expectations, low phylogenetic diversity enhances ecosystem stability directly, albeit weakly. While the diversity of fast-slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our in-depth, integrative assessment of factors influencing the diversity-stability relationship demonstrates a more multicausal relationship than has been previously acknowledged.

Details

Language :
English
ISSN :
2397-334X
Volume :
2
Issue :
10
Database :
MEDLINE
Journal :
Nature ecology & evolution
Publication Type :
Academic Journal
Accession number :
30150740
Full Text :
https://doi.org/10.1038/s41559-018-0647-7