Back to Search
Start Over
Review: Modulating ruminal lipid metabolism to improve the fatty acid composition of meat and milk. Challenges and opportunities.
- Source :
-
Animal : an international journal of animal bioscience [Animal] 2018 Dec; Vol. 12 (s2), pp. s272-s281. Date of Electronic Publication: 2018 Aug 24. - Publication Year :
- 2018
-
Abstract
- Growth in demand for foods with potentially beneficial effects on consumer health has motivated increased interest in developing strategies for improving the nutritional quality of ruminant-derived products. Manipulation of the rumen environment offers the opportunity to modify the lipid composition of milk and meat by changing the availability of fatty acids (FA) for mammary and intramuscular lipid uptake. Dietary supplementation with marine lipids, plant secondary compounds and direct-fed microbials has shown promising results. In this review, we have compiled information about their effects on the concentration of putative desirable FA (e.g. c9t11-CLA and vaccenic, oleic, linoleic and linolenic acids) in ruminal digesta, milk and intramuscular fat. Marine lipids rich in very long-chain n-3 polyunsaturated fatty acids (PUFA) efficiently inhibit the last step of C18 FA biohydrogenation (BH) in the bovine, ovine and caprine, increasing the outflow of t11-18:1 from the rumen and improving the concentration of c9t11-CLA in the final products, but increments in t10-18:1 are also often found due to shifts toward alternative BH pathways. Direct-fed microbials appear to favourably modify rumen lipid metabolism but information is still very limited, whereas a wide variety of plant secondary compounds, including tannins, polyphenol oxidase, essential oils, oxygenated FA and saponins, has been examined with varying success. For example, the effectiveness of tannins and essential oils is as yet controversial, with some studies showing no effects and others a positive impact on inhibiting the first step of BH of PUFA or, less commonly, the final step. Further investigation is required to unravel the causes of inconsistent results, which may be due to the diversity in active components, ruminant species, dosage, basal diet composition and time on treatments. Likewise, research must continue to address ways to mitigate negative side-effects of some supplements on animal performance (particularly, milk fat depression) and product quality (e.g. altered oxidative stability and shelf-life).
- Subjects :
- Animals
Cattle metabolism
Diet veterinary
Dietary Supplements
Fatty Acids, Unsaturated administration & dosage
Female
Fish Oils administration & dosage
Goats metabolism
Probiotics
Rumen metabolism
Sheep metabolism
Fatty Acids metabolism
Lipid Metabolism
Meat analysis
Milk chemistry
Ruminants metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1751-732X
- Volume :
- 12
- Issue :
- s2
- Database :
- MEDLINE
- Journal :
- Animal : an international journal of animal bioscience
- Publication Type :
- Academic Journal
- Accession number :
- 30139411
- Full Text :
- https://doi.org/10.1017/S1751731118001994