Back to Search Start Over

Axial and shear pullout forces of composite, porcine and human metatarsal and cuboid bones.

Authors :
Lenz M
Gueorguiev B
Garces JBG
Swords MP
Rammelt S
Hofmann GO
Zderic I
Ernst M
Richards RG
Sands AK
Source :
Journal of orthopaedic translation [J Orthop Translat] 2018 Jun 28; Vol. 14, pp. 67-73. Date of Electronic Publication: 2018 Jun 28 (Print Publication: 2018).
Publication Year :
2018

Abstract

Objectives: The varying mechanical properties of human bone have influence on the study results. Pullout and shear forces of human bone were compared to different substitutes to evaluate their suitability for biomechanical studies.<br />Methods: After bone mineral density (BMD) determination, axial pullout tests were performed with cortical 3.5 mm nonlocking (NL) and 2.7 mm head locking (HL) screws on human, porcine and polyurethane composite bones. Porcine and human constructs were additionally loaded in shear direction.<br />Results: Apparent BMD was significantly lower in osteoporotic (159 mgHA/ccm ± 56) and nonosteoporotic (229 mgHA/ccm ± 25) human bone than that in porcine bone (325 mgHA/ccm ± 42; p  < 0.01). Axial construct stiffness and ultimate pullout force of porcine bone (NL: 666N/mm ± 226, 910N ± 140; HL: 309N/mm ± 88, 744N ± 185) was significantly different from composite bone (NL: 1284N/mm ± 161; 1175N ± 116; HL: 1241N/mm ± 172, 1185N ± 225) and osteoporotic human bone (NL: 204N/mm ± 121, 185N ± 113; HL: 201N/mm ± 65; 189N ± 58) but not from nonosteoporotic human bone (NL: 620N/mm ± 205, 852N ± 281; HL: 399N/mm ± 224; 567N ± 242). Porcine bone exhibited an ultimate shear force (NL: 278N ± 99; HL: 431N ± 155) comparable to nonosteoporotic human bone (NL: 207 ± 68: HL: 374N ± 137).<br />Conclusion: Screw pullout and shear forces of porcine bone are close to nonosteoporotic human bone.<br />The Translational Potential of This Article: Human bone specimens used in biomechanical studies are predominantly of osteoporotic bone quality. Conclusions on nonosteoporotic human bone behaviour are difficult. Alternatives such as porcine bone and composite bone were investigated, and it could be shown that screw pullout and screw shear forces of porcine bone are close to nonosteoporotic human bone.

Details

Language :
English
ISSN :
2214-031X
Volume :
14
Database :
MEDLINE
Journal :
Journal of orthopaedic translation
Publication Type :
Academic Journal
Accession number :
30094182
Full Text :
https://doi.org/10.1016/j.jot.2018.06.001