Back to Search
Start Over
Interaction between the cellular E3 ubiquitin ligase SIAH-1 and the viral immediate-early protein ICP0 enables efficient replication of Herpes Simplex Virus type 2 in vivo.
- Source :
-
PloS one [PLoS One] 2018 Aug 06; Vol. 13 (8), pp. e0201880. Date of Electronic Publication: 2018 Aug 06 (Print Publication: 2018). - Publication Year :
- 2018
-
Abstract
- Herpes Simplex Virus type 2 (HSV-2) is a neurotropic human pathogen. Upon de novo infection, the viral infected cell protein 0 (ICP0) is immediately expressed and interacts with various cellular components during the viral replication cycle. ICP0 is a multifunctional regulatory protein that has been shown to be important for both efficient viral replication and virus reactivation from latency. In particular, as previously demonstrated in transfected tissue culture models, ICP0 interacts with the cellular E3 ubiquitin ligase SIAH-1, which targets ICP0 for proteasomal degradation. However, the consequence of this virus-host interaction during the establishment of HSV-2 infection in vivo has not yet been elucidated. Here we confirmed that ICP0 of HSV-2 interacts with SIAH-1 via two conserved PxAxVxP amino acid binding motifs. We also demonstrate in vitro that a SIAH-1 binding-deficient HSV-2 strain, constructed by homologous recombination technology, exhibits an attenuated growth curve and impaired DNA and protein synthesis. This attenuated phenotype was also confirmed in an in vivo ocular infection mouse model. Specifically, viral load of the SIAH-1 binding-deficient HSV-2 mutant was significantly reduced in the trigeminal ganglia and brain stem at day 5 and 7 post infection. Our findings indicate that the interplay between ICP0 and SIAH-1 is important for efficient HSV-2 replication in vivo, thereby affecting viral dissemination kinetics in newly infected organisms, and possibly revealing novel targets for antiviral therapy.<br />Competing Interests: The commercial affiliation of an author of this study [MME] (Biomedizinische Forschungsgesellschaft mbH, Vienna, Austria) does not alter our adherence to all PLOS ONE policies on sharing data and materials.
- Subjects :
- Animals
Binding Sites genetics
Brain Stem metabolism
Brain Stem virology
Cell Line
Chlorocebus aethiops
Cricetinae
Disease Models, Animal
Eye metabolism
Eye virology
Eye Infections, Viral genetics
Eye Infections, Viral metabolism
Female
Herpes Simplex genetics
Herpes Simplex metabolism
Herpesvirus 2, Human genetics
Herpesvirus 2, Human growth & development
Host-Pathogen Interactions genetics
Humans
Immediate-Early Proteins genetics
Mice, Inbred C57BL
Nuclear Proteins genetics
Trigeminal Ganglion metabolism
Trigeminal Ganglion virology
Ubiquitin-Protein Ligases genetics
Viral Proteins genetics
Virus Replication genetics
Seven in Absentia Proteins
Herpesvirus 2, Human physiology
Host-Pathogen Interactions physiology
Immediate-Early Proteins metabolism
Nuclear Proteins metabolism
Ubiquitin-Protein Ligases metabolism
Viral Proteins metabolism
Virus Replication physiology
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 13
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 30080903
- Full Text :
- https://doi.org/10.1371/journal.pone.0201880