Back to Search
Start Over
Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits.
- Source :
-
Acta biomaterialia [Acta Biomater] 2018 Sep 15; Vol. 78, pp. 48-63. Date of Electronic Publication: 2018 Aug 01. - Publication Year :
- 2018
-
Abstract
- Entubulating devices to repair peripheral nerve injuries are limited in their effectiveness particularly for critical gap injuries. Current clinically used nerve guidance conduits are often simple tubes, far stiffer than that of the native tissue. This study assesses the use of poly(glycerol sebacate methacrylate) (PGSm), a photocurable formulation of the soft biodegradable material, PGS, for peripheral nerve repair. The material was synthesized, the degradation rate and mechanical properties of material were assessed and nerve guidance conduits were structured via stereolithography. In vitro cell studies confirmed PGSm as a supporting substrate for both neuronal and glial cell growth. Ex vivo studies highlight the ability of the cells from a dissociated dorsal root ganglion to grow out and align along the internal topographical grooves of printed nerve guide conduits. In vivo results in a mouse common fibular nerve injury model show regeneration of axons through the PGSm conduit into the distal stump after 21 days. After conduit repair levels of spinal cord glial activation (an indicator for neuropathic pain development) were equivalent to those seen following graft repair. In conclusion, results indicate that PGSm can be structured via additive manufacturing into functional NGCs. This study opens the route of personalized conduit manufacture for nerve injury repair.<br />Statement of Significance: This study describes the use of photocurable of Poly(Glycerol Sebacate) (PGS) for light-based additive manufacturing of Nerve Guidance Conduits (NGCs). PGS is a promising flexible biomaterial for soft tissue engineering, and in particular for nerve repair. Its mechanical properties and degradation rate are within the desirable range for use in neuronal applications. The nerve regeneration supported by the PGS NGCs is similar to an autologous nerve transplant, the current gold standard. A second assessment of regeneration is the activation of glial cells within the spinal cord of the tested animals which reveals no significant increase in neuropathic pain by using the NGCs. This study highlights the successful use of a biodegradable additive manufactured NGC for peripheral nerve repair.<br /> (Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Subjects :
- Animals
Astrocytes drug effects
Astrocytes metabolism
Axons drug effects
Cells, Cultured
Fibula drug effects
Fibula innervation
Ganglia, Spinal drug effects
Ganglia, Spinal metabolism
Glycerol pharmacology
Male
Mice
Neuroglia drug effects
Neuroglia metabolism
Neurons drug effects
Neurons metabolism
Rats, Wistar
Biocompatible Materials pharmacology
Decanoates pharmacology
Glycerol analogs & derivatives
Guided Tissue Regeneration methods
Methacrylates pharmacology
Nerve Regeneration drug effects
Polymers pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 1878-7568
- Volume :
- 78
- Database :
- MEDLINE
- Journal :
- Acta biomaterialia
- Publication Type :
- Academic Journal
- Accession number :
- 30075322
- Full Text :
- https://doi.org/10.1016/j.actbio.2018.07.055