Back to Search Start Over

[The Preparation and Characterization of a New Solid Coagulant: Polymeric Ferric Silicate Sulfate].

Authors :
Zhu GC
Liu JF
Zhou TZ
Zhang P
Ren BZ
Zheng HL
Liu YS
Li XM
Source :
Guang pu xue yu guang pu fen xi = Guang pu [Guang Pu Xue Yu Guang Pu Fen Xi] 2016 Aug; Vol. 36 (8), pp. 2455-61.
Publication Year :
2016

Abstract

As one of the most important water treatment agents, polysilicate coagulant, has been playing an important role in coagulation- flocculation, but it is prone to lose stability due to self-polymerization and the forming of silica gel. Therefore, research on the preparation of stable polysilicate coagulant has attract great attention. A new method to prepare a stable polysilicate coagulant (PSPF), was proposed in this paper. Its structure and morphology were characterized by using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) respectively. Fe species in PSPF was analyzed via Fe-Ferron complexation timed spectrophotometric method. The performance of PSPF was assessed by measuring micro-polluted water treatment efficiency. Primary chemicals, such as ferrous sulfate, sodium silicate, potassium dihydrogen phosphate, sodium carbonate, were used. The influence of those parameters affecting the preparation of PSPF, such as nSi/nFe, nP/nFe and nOH/nFe molar ratios were examined. The results showed that nSi/nFe of 1∶4, nP/nFe of 1∶6 and nOH/nFe of 1∶10 under 60 ℃ water bath for 30 min was the optimum condition for preparation. The FTIR spectrum indicated that PSPF was a kind of high molecular polymer, containing new groups (e.g., Si—O—Si and Fe—O—Si), which could increase the molecular weight,molecular chain and coagulation-flocculation efficiency. PSPF presented a cluster appearance similar to a network structure, which was conductive to adsorption-bridging capacity and precipitation sweeping. The increase of Fe(b) and Fe(c) as a result of Si increasing in PSPF improved the polymerization and solidification. The coagulation behaviors of PSPF that were largely affected by the coagulant dosage and pH, indicated that for pH and dosage at 6 and 8 mg·L-1, respectively, the residual turbidity and UV254 removal efficiency could achieve 0.33 NTU and 58.6%, respectively.

Details

Language :
Chinese
ISSN :
1000-0593
Volume :
36
Issue :
8
Database :
MEDLINE
Journal :
Guang pu xue yu guang pu fen xi = Guang pu
Publication Type :
Academic Journal
Accession number :
30074346