Back to Search Start Over

Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides.

Authors :
Koroglu B
Wagnon S
Dai Z
Crowhurst JC
Armstrong MR
Weisz D
Mehl M
Zaug JM
Radousky HB
Rose TP
Source :
Scientific reports [Sci Rep] 2018 Jul 11; Vol. 8 (1), pp. 10451. Date of Electronic Publication: 2018 Jul 11.
Publication Year :
2018

Abstract

We use a recently developed plasma-flow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t < 30 ms) at atmospheric pressures in the presence of excess oxygen. In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-Al <subscript>2</subscript> O <subscript>3</subscript> , UO <subscript>2</subscript> , and alpha-UO <subscript>3</subscript> ) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation.

Details

Language :
English
ISSN :
2045-2322
Volume :
8
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
29992989
Full Text :
https://doi.org/10.1038/s41598-018-28674-6