Back to Search Start Over

Stabilization of dry protein coatings with compatible solutes.

Authors :
Killian MS
Taylor AJ
Castner DG
Source :
Biointerphases [Biointerphases] 2018 Jun 29; Vol. 13 (6), pp. 06E401. Date of Electronic Publication: 2018 Jun 29.
Publication Year :
2018

Abstract

Exposure of protein modified surfaces to air may be necessary in several applications. For example, air contact may be inevitable during the implantation of biomedical devices, for analysis of protein modified surfaces, or for sensor applications. Protein coatings are very sensitive to dehydration and can undergo significant and irreversible alterations of their conformations upon exposure to air. With the use of two compatible solutes from extremophilic bacteria, ectoine and hydroxyectoine, the authors were able to preserve the activity of dried protein monolayers for up to >24 h. The protective effect can be explained by the preferred exclusion model; i.e., the solutes trap a thin water layer around the protein, retaining an aqueous environment and preventing unfolding of the protein. Horseradish peroxidase (HRP) immobilized on compact TiO <subscript>2</subscript> was used as a model system. Structural differences between the compatible solute stabilized and unstabilized protein films, and between different solutes, were analyzed by static time-of-flight secondary ion mass spectrometry (ToF-SIMS). The biological activity difference observed in a colorimetric activity assay was correlated to changes in protein conformation by application of principal component analysis to the static ToF-SIMS data. Additionally, rehydration of the denatured HRP was observed in ToF-SIMS with an exposure of denatured protein coatings to ectoine and hydroxyectoine solutions.

Details

Language :
English
ISSN :
1559-4106
Volume :
13
Issue :
6
Database :
MEDLINE
Journal :
Biointerphases
Publication Type :
Academic Journal
Accession number :
29958498
Full Text :
https://doi.org/10.1116/1.5031189