Back to Search Start Over

SPG11 mutations cause widespread white matter and basal ganglia abnormalities, but restricted cortical damage.

Authors :
Faber I
Martinez ARM
de Rezende TJR
Martins CR Jr
Martins MP
Lourenço CM
Marques W Jr
Montecchiani C
Orlacchio A
Pedroso JL
Barsottini OGP
Lopes-Cendes Í
França MC Jr
Source :
NeuroImage. Clinical [Neuroimage Clin] 2018 Jun 09; Vol. 19, pp. 848-857. Date of Electronic Publication: 2018 Jun 09 (Print Publication: 2018).
Publication Year :
2018

Abstract

SPG11 mutations are the major cause of autosomal recessive Hereditary Spastic Paraplegia. The disease has a wide phenotypic variability indicating many regions of the nervous system besides the corticospinal tract are affected. Despite this, anatomical and phenotypic characterization is restricted. In the present study, we investigate the anatomical abnormalities related to SPG11 mutations and how they relate to clinical and cognitive measures. Moreover, we aim to depict how the disease course influences the regions affected, unraveling different susceptibility of specific neuronal populations. We performed clinical and paraclinical studies encompassing neuropsychological, neuroimaging, and neurophysiological tools in a cohort of twenty-five patients and age matched controls. We assessed cortical thickness (FreeSurfer software), deep grey matter volumes (T1-MultiAtlas tool), white matter microstructural damage (DTI-MultiAtlas) and spinal cord morphometry (Spineseg software) on a 3 T MRI scan. Mean age and disease duration were 29 and 13.2 years respectively. Sixty-four percent of the patients were wheelchair bound while 84% were demented. We were able to unfold a diffuse pattern of white matter integrity loss as well as basal ganglia and spinal cord atrophy. Such findings contrasted with a restricted pattern of cortical thinning (motor, limbic and parietal cortices). Electromyography revealed motor neuronopathy affecting 96% of the probands. Correlations with disease duration pointed towards a progressive degeneration of multiple grey matter structures and spinal cord, but not of the white matter. SPG11 -related hereditary spastic paraplegia is characterized by selective neuronal vulnerability, in which a precocious and widespread white matter involvement is later followed by a restricted but clearly progressive grey matter degeneration.

Details

Language :
English
ISSN :
2213-1582
Volume :
19
Database :
MEDLINE
Journal :
NeuroImage. Clinical
Publication Type :
Academic Journal
Accession number :
29946510
Full Text :
https://doi.org/10.1016/j.nicl.2018.05.031