Back to Search
Start Over
Hot-electron transfer in quantum-dot heterojunction films.
- Source :
-
Nature communications [Nat Commun] 2018 Jun 13; Vol. 9 (1), pp. 2310. Date of Electronic Publication: 2018 Jun 13. - Publication Year :
- 2018
-
Abstract
- Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 29899361
- Full Text :
- https://doi.org/10.1038/s41467-018-04623-9