Back to Search Start Over

Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.

Authors :
Bunday KL
Urbin MA
Perez MA
Source :
Brain stimulation [Brain Stimul] 2018 Sep - Oct; Vol. 11 (5), pp. 1083-1092. Date of Electronic Publication: 2018 May 09.
Publication Year :
2018

Abstract

Background: Paired corticospinal-motoneuronal stimulation (PCMS) increases corticospinal transmission in humans with chronic incomplete spinal cord injury (SCI).<br />Objective/hypothesis: Here, we examine whether increases in the excitability of spinal motoneurons, by performing voluntary activity, could potentiate PCMS effects on corticospinal transmission.<br />Methods: During PCMS, we used 100 pairs of stimuli where corticospinal volleys evoked by transcranial magnetic stimulation (TMS) over the hand representation of the primary motor cortex were timed to arrive at corticospinal-motoneuronal synapses of the first dorsal interosseous (FDI) muscle ∼1-2 ms before antidromic potentials were elicited in motoneurons by electrical stimulation of the ulnar nerve. PCMS was applied at rest (PCMS <subscript>rest</subscript> ) and during a small level of isometric index finger abduction (PCMS <subscript>active</subscript> ) on separate days. Motor evoked potentials (MEPs) elicited by TMS and electrical stimulation were measured in the FDI muscle before and after each protocol in humans with and without (controls) chronic cervical SCI.<br />Results: We found in control participants that MEPs elicited by TMS and electrical stimulation increased to a similar extent after both PCMS protocols for ∼30 min. Whereas, in humans with SCI, MEPs elicited by TMS and electrical stimulation increased to a larger extent after PCMS <subscript>active</subscript> compared with PCMS <subscript>rest</subscript> . Importantly, SCI participants who did not respond to PCMS <subscript>rest</subscript> responded after PCMS <subscript>active</subscript> and those who responded to both protocols showed larger increments in corticospinal transmission after PCMS <subscript>active</subscript> .<br />Conclusions: Our findings suggest that muscle contraction during PCMS potentiates corticospinal transmission. PCMS applied during voluntary activity may represent a strategy to boost spinal plasticity after SCI.<br /> (Copyright © 2018 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1876-4754
Volume :
11
Issue :
5
Database :
MEDLINE
Journal :
Brain stimulation
Publication Type :
Academic Journal
Accession number :
29848448
Full Text :
https://doi.org/10.1016/j.brs.2018.05.006