Back to Search Start Over

Personalized dynamic risk assessment in nephrology is a next step in prognostic research.

Authors :
Brankovic M
Kardys I
Hoorn EJ
Baart S
Boersma E
Rizopoulos D
Source :
Kidney international [Kidney Int] 2018 Jul; Vol. 94 (1), pp. 214-217. Date of Electronic Publication: 2018 May 24.
Publication Year :
2018

Abstract

In nephrology, repeated measures are frequently available (glomerular filtration rate or proteinuria) and linked to adverse outcomes. However, several features of these longitudinal data should be considered before making such inferences. These considerations are discussed, and we describe how joint modeling of repeatedly measured and time-to-event data may help to assess disease dynamics and to derive personalized prognosis. Joint modeling combines linear mixed-effects models and Cox regression model to relate patient-specific trajectory to their prognosis. We describe several aspects of the relationship between time-varying markers and the endpoint of interest that are assessed with real examples to illustrate the aforementioned aspects of the longitudinal data provided. Thus, joint models are valuable statistical tools for study purposes but also may help health care providers in making well-informed dynamic medical decisions.<br /> (Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1523-1755
Volume :
94
Issue :
1
Database :
MEDLINE
Journal :
Kidney international
Publication Type :
Academic Journal
Accession number :
29804659
Full Text :
https://doi.org/10.1016/j.kint.2018.04.007