Back to Search Start Over

Proteins as supramolecular hosts for C 60 : a true solution of C 60 in water.

Authors :
Di Giosia M
Bomans PHH
Bottoni A
Cantelli A
Falini G
Franchi P
Guarracino G
Friedrich H
Lucarini M
Paolucci F
Rapino S
Sommerdijk NAJM
Soldà A
Valle F
Zerbetto F
Calvaresi M
Source :
Nanoscale [Nanoscale] 2018 May 31; Vol. 10 (21), pp. 9908-9916.
Publication Year :
2018

Abstract

Hybrid systems have great potential for a wide range of applications in chemistry, physics and materials science. Conjugation of a biosystem to a molecular material can tune the properties of the components or give rise to new properties. As a workhorse, here we take a C60@lysozyme hybrid. We show that lysozyme recognizes and disperses fullerene in water. AFM, cryo-TEM and high resolution X-ray powder diffraction show that the C60 dispersion is monomolecular. The adduct is biocompatible, stable in physiological and technologically-relevant environments, and easy to store. Hybridization with lysozyme preserves the electrochemical properties of C60. EPR spin-trapping experiments show that the C60@lysozyme hybrid produces ROS following both type I and type II mechanisms. Due to the shielding effect of proteins, the adduct generates significant amounts of 1O2 also in aqueous solution. In the case of type I mechanism, the protein residues provide electrons and the hybrid does not require addition of external electron donors. The preparation process and the properties of C60@lysozyme are general and can be expected to be similar to other C60@protein systems. It is envisaged that the properties of the C60@protein hybrids will pave the way for a host of applications in nanomedicine, nanotechnology, and photocatalysis.

Details

Language :
English
ISSN :
2040-3372
Volume :
10
Issue :
21
Database :
MEDLINE
Journal :
Nanoscale
Publication Type :
Academic Journal
Accession number :
29790558
Full Text :
https://doi.org/10.1039/c8nr02220h