Back to Search Start Over

Electrical resistivity imaging inversion: An ISFLA trained kernel principal component wavelet neural network approach.

Authors :
Jiang F
Dong L
Dai Q
Source :
Neural networks : the official journal of the International Neural Network Society [Neural Netw] 2018 Aug; Vol. 104, pp. 114-123. Date of Electronic Publication: 2018 Apr 24.
Publication Year :
2018

Abstract

The traditional artificial neural network (ANN) inversion of electrical resistivity imaging (ERI) based on gradient descent algorithm is known to be inept for its low computation efficiency and does not ensure global convergence. In order to solve above problems, a kernel principal component wavelet neural network (KPCWNN) trained by an improved shuffled frog leaping algorithm (ISFLA) method is proposed in this study. An additional kernel principal component (KPC) layer is applied to reduce the dimensionality of apparent resistivity data and increase the computational efficiency of wavelet neural network (WNN). Meanwhile, a novel ISFLA algorithm is adopted for improving the learning ability and inversion quality of WNN. In the proposed ISFLA, a hybrid LC mutation attractor is used to enhance the exploitation ability and a differential updating rule is used to enhance the exploration ability. Four groups of experiments are considered to demonstrate the feasibility of the proposed inversion method. The inversion results of the synthetic and field examples show that the introduced method is superior to other algorithms in terms of prediction accuracy and computational efficiency, which contribute to better inversion results.<br /> (Copyright © 2018 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-2782
Volume :
104
Database :
MEDLINE
Journal :
Neural networks : the official journal of the International Neural Network Society
Publication Type :
Academic Journal
Accession number :
29775850
Full Text :
https://doi.org/10.1016/j.neunet.2018.04.012