Back to Search
Start Over
Genomewide binding of transcription factor Snail1 in triple-negative breast cancer cells.
- Source :
-
Molecular oncology [Mol Oncol] 2018 Jun; Vol. 12 (7), pp. 1153-1174. Date of Electronic Publication: 2018 May 21. - Publication Year :
- 2018
-
Abstract
- Transcriptional regulation mediated by the zinc finger protein Snail1 controls early embryogenesis. By binding to the epithelial tumor suppressor CDH1 gene, Snail1 initiates the epithelial-mesenchymal transition (EMT). The EMT generates stem-like cells and promotes invasiveness during cancer progression. Accordingly, Snail1 mRNA and protein is abundantly expressed in triple-negative breast cancers with enhanced metastatic potential and phenotypic signs of the EMT. Such high endogenous Snail1 protein levels permit quantitative chromatin immunoprecipitation-sequencing (ChIP-seq) analysis. Snail1 associated with 185 genes at cis regulatory regions in the Hs578T triple-negative breast cancer cell model. These genes include morphogenetic regulators and signaling components that control polarized differentiation. Using the CRISPR/Cas9 system in Hs578T cells, a double deletion of 10 bp each was engineered into the first exon and into the second exon-intron junction of Snail1, suppressing Snail1 expression and causing misregulation of several hundred genes. Specific attention to regulators of chromatin organization provides a possible link to new phenotypes uncovered by the Snail1 loss-of-function mutation. On the other hand, genetic inactivation of Snail1 was not sufficient to establish a full epithelial transition to these tumor cells. Thus, Snail1 contributes to the malignant phenotype of breast cancer cells via diverse new mechanisms.<br /> (© 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.)
- Subjects :
- Base Sequence
Bone Morphogenetic Protein 6 metabolism
Bone and Bones metabolism
Cell Line, Tumor
Cell Movement genetics
Female
Gene Expression Regulation, Neoplastic
Gene Knockout Techniques
HEK293 Cells
Homeostasis
Humans
Mesoderm metabolism
Phenotype
Protein Binding
Transcriptome genetics
Genome, Human
Snail Family Transcription Factors metabolism
Triple Negative Breast Neoplasms genetics
Triple Negative Breast Neoplasms metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1878-0261
- Volume :
- 12
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Molecular oncology
- Publication Type :
- Academic Journal
- Accession number :
- 29729076
- Full Text :
- https://doi.org/10.1002/1878-0261.12317