Back to Search
Start Over
Nanocrystalline Iron Monosulfides Near Stoichiometry.
- Source :
-
Scientific reports [Sci Rep] 2018 Apr 26; Vol. 8 (1), pp. 6591. Date of Electronic Publication: 2018 Apr 26. - Publication Year :
- 2018
-
Abstract
- Solids composed of iron and sulfur are earth abundant and nontoxic, and can exhibit interesting and technologically important optical, electronic, and magnetic phenomena. However, the iron-sulfur (Fe-S) phase diagram is congested in regions of slight non-stoichiometric iron vacancies, and even when the iron atomic composition changes by even a few percent at standard temperature and pressure, there are myriad stable crystal phases that form with qualitatively different electronic properties. Here, we synthesized and characterized nanocrystals of the pyrrhotite-4M structure (Fe <subscript>7</subscript> S <subscript>8</subscript> ) in an anhydrous oleylamine solvent. Upon heating from 140 °C to 180 °C, the solid sequentially transformed into two kinetically trapped FeS intermediate phases before reaching the pyrrhotite-4M final product. Finally, we assessed the effects of iron vacancies using the stoichiometric end-member, troilite, as a reference system. Density functional theory calculations show that iron vacancies in troilite shift the structure from hexagonal FeS to a monoclinic structure, similar to crystal structures of pyrrhotites, and suggest that this iron deficient troilite may be a stable intermediate between the two crystal structures. The calculations predict that defects also close the band gap in iron deficient troilite.
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 8
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 29700336
- Full Text :
- https://doi.org/10.1038/s41598-018-24739-8