Back to Search Start Over

GIFTed Demons: deformable image registration with local structure-preserving regularization using supervoxels for liver applications.

Authors :
Papież BW
Franklin JM
Heinrich MP
Gleeson FV
Brady M
Schnabel JA
Source :
Journal of medical imaging (Bellingham, Wash.) [J Med Imaging (Bellingham)] 2018 Apr; Vol. 5 (2), pp. 024001. Date of Electronic Publication: 2018 Apr 04.
Publication Year :
2018

Abstract

Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset.

Details

Language :
English
ISSN :
2329-4302
Volume :
5
Issue :
2
Database :
MEDLINE
Journal :
Journal of medical imaging (Bellingham, Wash.)
Publication Type :
Academic Journal
Accession number :
29662918
Full Text :
https://doi.org/10.1117/1.JMI.5.2.024001