Back to Search Start Over

Human umbilical cord mesenchymal stem cells facilitate the up-regulation of miR-153-3p, whereby attenuating MGO-induced peritoneal fibrosis in rats.

Authors :
Li D
Lu Z
Li X
Xu Z
Jiang J
Zheng Z
Jia J
Lin S
Yan T
Source :
Journal of cellular and molecular medicine [J Cell Mol Med] 2018 Jul; Vol. 22 (7), pp. 3452-3463. Date of Electronic Publication: 2018 Apr 14.
Publication Year :
2018

Abstract

MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR-153-3p involved in anti-EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO-induced PF rats (Group MGO) and hUCMSCs-treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real-time PCR analyses were conducted in three groups. α-SMA, Snail1 and E-cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR-153-3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR-153-3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR-153-3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3'-untranslated region luciferase activity in RPMCs. These studies suggest that miR-153-3p is a critical molecule in anti-EMT effects of hUCMSCs in MGO-induced PF rats. MiR-153-3p might exert its beneficial effect through directly targeting Snai1.<br /> (© 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.)

Details

Language :
English
ISSN :
1582-4934
Volume :
22
Issue :
7
Database :
MEDLINE
Journal :
Journal of cellular and molecular medicine
Publication Type :
Academic Journal
Accession number :
29654659
Full Text :
https://doi.org/10.1111/jcmm.13622