Back to Search Start Over

Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

Authors :
Mahajan A
Wessel J
Willems SM
Zhao W
Robertson NR
Chu AY
Gan W
Kitajima H
Taliun D
Rayner NW
Guo X
Lu Y
Li M
Jensen RA
Hu Y
Huo S
Lohman KK
Zhang W
Cook JP
Prins BP
Flannick J
Grarup N
Trubetskoy VV
Kravic J
Kim YJ
Rybin DV
Yaghootkar H
Müller-Nurasyid M
Meidtner K
Li-Gao R
Varga TV
Marten J
Li J
Smith AV
An P
Ligthart S
Gustafsson S
Malerba G
Demirkan A
Tajes JF
Steinthorsdottir V
Wuttke M
Lecoeur C
Preuss M
Bielak LF
Graff M
Highland HM
Justice AE
Liu DJ
Marouli E
Peloso GM
Warren HR
Afaq S
Afzal S
Ahlqvist E
Almgren P
Amin N
Bang LB
Bertoni AG
Bombieri C
Bork-Jensen J
Brandslund I
Brody JA
Burtt NP
Canouil M
Chen YI
Cho YS
Christensen C
Eastwood SV
Eckardt KU
Fischer K
Gambaro G
Giedraitis V
Grove ML
de Haan HG
Hackinger S
Hai Y
Han S
Tybjærg-Hansen A
Hivert MF
Isomaa B
Jäger S
Jørgensen ME
Jørgensen T
Käräjämäki A
Kim BJ
Kim SS
Koistinen HA
Kovacs P
Kriebel J
Kronenberg F
Läll K
Lange LA
Lee JJ
Lehne B
Li H
Lin KH
Linneberg A
Liu CT
Liu J
Loh M
Mägi R
Mamakou V
McKean-Cowdin R
Nadkarni G
Neville M
Nielsen SF
Ntalla I
Peyser PA
Rathmann W
Rice K
Rich SS
Rode L
Rolandsson O
Schönherr S
Selvin E
Small KS
Stančáková A
Surendran P
Taylor KD
Teslovich TM
Thorand B
Thorleifsson G
Tin A
Tönjes A
Varbo A
Witte DR
Wood AR
Yajnik P
Yao J
Yengo L
Young R
Amouyel P
Boeing H
Boerwinkle E
Bottinger EP
Chowdhury R
Collins FS
Dedoussis G
Dehghan A
Deloukas P
Ferrario MM
Ferrières J
Florez JC
Frossard P
Gudnason V
Harris TB
Heckbert SR
Howson JMM
Ingelsson M
Kathiresan S
Kee F
Kuusisto J
Langenberg C
Launer LJ
Lindgren CM
Männistö S
Meitinger T
Melander O
Mohlke KL
Moitry M
Morris AD
Murray AD
de Mutsert R
Orho-Melander M
Owen KR
Perola M
Peters A
Province MA
Rasheed A
Ridker PM
Rivadineira F
Rosendaal FR
Rosengren AH
Salomaa V
Sheu WH
Sladek R
Smith BH
Strauch K
Uitterlinden AG
Varma R
Willer CJ
Blüher M
Butterworth AS
Chambers JC
Chasman DI
Danesh J
van Duijn C
Dupuis J
Franco OH
Franks PW
Froguel P
Grallert H
Groop L
Han BG
Hansen T
Hattersley AT
Hayward C
Ingelsson E
Kardia SLR
Karpe F
Kooner JS
Köttgen A
Kuulasmaa K
Laakso M
Lin X
Lind L
Liu Y
Loos RJF
Marchini J
Metspalu A
Mook-Kanamori D
Nordestgaard BG
Palmer CNA
Pankow JS
Pedersen O
Psaty BM
Rauramaa R
Sattar N
Schulze MB
Soranzo N
Spector TD
Stefansson K
Stumvoll M
Thorsteinsdottir U
Tuomi T
Tuomilehto J
Wareham NJ
Wilson JG
Zeggini E
Scott RA
Barroso I
Frayling TM
Goodarzi MO
Meigs JB
Boehnke M
Saleheen D
Morris AP
Rotter JI
McCarthy MI
Source :
Nature genetics [Nat Genet] 2018 Apr; Vol. 50 (4), pp. 559-571. Date of Electronic Publication: 2018 Apr 09.
Publication Year :
2018

Abstract

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10 <superscript>-7</superscript> ); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

Details

Language :
English
ISSN :
1546-1718
Volume :
50
Issue :
4
Database :
MEDLINE
Journal :
Nature genetics
Publication Type :
Academic Journal
Accession number :
29632382
Full Text :
https://doi.org/10.1038/s41588-018-0084-1